SQL 1s Dead, Long Live SQL!

Prof. dr.Wilfried Lemahieu
Facultyof Economics and Business
KU Leuven
Wilfried.Lemahieu@Kkuleuven.be

mailto:Wilfried.Lemahieu@kuleuven.be

Our New Book!

.pdbmbook.com

%)

Em[vmaﬁom' \ J } J

ABASE MANAGEME
" ref:E\slve database

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

PRINCIPLES OF

DATABASE
MANAGEMENT

THE PRACTICAL GUIDETO STORING. MANAGING
AND ANALYZING BIG AND SMALL DAT,

SNAS3 v NV

ININ0YG NIANVA
v NIHYIAT

;

aement information tb understand and apply the fundamental concepts of s
databdse designind modeling, database systems; data storage, and the evolving world
of data wareholising, governance and more. Designed for those studying dataﬂase
management fo information management or computer science, this illustrate
textbook has a well-balanced theory—practice focus and covers the essential tdpics,
from established database technologies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, drill-down boxes that reveal deeper insights on key.
topics, retention questions at the end of every section of a chapter, and connections
boxes that show the relationship between concepts throughout the text are included to
provide the practical tools to get started in database management.

INIWIOYNYI ISV aYIYa

il

0531413

KEY FEATURES INCLUDE:

« Full-color illustrations throughout the text.

« Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.
An online playground with diverse environments, including MySQL for query
MongoDB; Neodj Cypher; and a tree structure visualization environment.

Hundreds of examples to illustrate and clarify the concepts discussed that can be
reproduced on the book’s companion online playground.
Case studies, review questions, problems and exercises in every chapter.

Additional cases, problems and exercises in the appendix.

Online Resources
www.cambridge.org/

Instructor’s resourcos
M Solutions manual
M Code and data for examples

1581 9
Cover llustration: @Chen Hanguan / DigitaVision / Gety Images.
Corer design: Andrew Ward

781

n 62-5

071861

1

8

http://www.pdbmbook.com/
http://www.cambridge.org/be/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/principles-database-management-practical-guide-storing-managing-and-analyzing-big-and-small-data?format=HB&isbn=9781107186125#7GgX5ymaGgpY6fAI.97
http://www.cambridge.org/be/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/principles-database-management-practical-guide-storing-managing-and-analyzing-big-and-small-data?format=HB&isbn=9781107186125#7GgX5ymaGgpY6fAI.97

Author Team

A Prof. Wilfried Lemahieu
I professor and dean at KU Leuven (Belgium)
I Database Management, Data Integration, Data Quality
I Wilfried.Lemahieu@kuleuven.be

A Prof. Seppe vanden Broucke
I professor at KU Leuven (Belgium)
I Process and Data Science
I Seppe.vandenBroucke@kuleuven.be

A Prof. Bart Baesens
I professor at KU Leuven (Belgium) and University of Southampton (
I Analytics, Credit Risk, Fraud Detection
i Bart.Baesens@kuleuven.be

mailto:Wilfried.Lemahieu@kuleuven.be
mailto:Seppe.vandenBroucke@kuleuven.be
mailto:Bart.Baesens@kuleuven.be

BAAS (Book as a Service)

A Book websitewww.pdbmbook.com

I Free YouTube lectures

I Free PowerPoint slides
AAvailable in English, Mandarin and Spanish

I Free online multiple choice quiz tool

I Online playground including MySQL, MongoDB, and
Neod| Cypher (also available as a Dockerfile)

I Solutions manual

http://www.pdbmbook.com/

Overview

A SQL and relational databases

A NoSQL

I Keyvalue stores

| Document stores

I Columnoriented databases

I Graph databases

I Transaction management, APIs, other NoSQL types

A Evaluating NoSQL databases: is SQL dead and buried?

SOL

A First version SQ&6 in 1986
A Most recent version in 2016

(SQL:2016) - Qallslad % é

A Accepted by =

i American National Standards Institute /j_ |

(ANSI) in 1986

I International Organization for
Standardization (ISO) in 1987

A Each vendor provides own

Implementation

. An SQL query walks into a bar and sees two tables.
SQI— dialect He walks up to them and says "Can I join you?"

&
&= \

:

<> comicbrowserling’com
A =

SQL: DDL + DML

Host Language +

Host Language +

Interactive SQL

Call Level Interface embedded SQL
SQL View SQL View SQL View
definition definition definition

DDL + DML

CREATE TABLESUPPLIER

(SUPNR CHAR(4)NOT NULL PRIMARY KEY
SUPNAME VARCHAR(4B)0T NULL
SUPADDRESS VARCHAR(50),

SUPCITY VARCHAR(20),
SUPSTATUS SMALLINT)

SELECTSUPNR, SUPNAME
FROMSUPPLIER
WHERBUPCITY = 'San Francisco'
ANDSUPSTATUS > 80

SELECTSUPNAME
FROMSUPPLIER R
WHEREXISTS
(SELECT*
FROMSUPPLIES S
WHERKR.SUPNR = S.SUPNR
ANDS.PRODNR ='0178")

DELETE FRONMSUPPLIES S1
WHERES1. PURCHASE_PRICE >

(SELECT2* AVGG2.PURCHASE_PRICE)
FROMSUPPLIES S2
WHERES1.PRODNR = S2.PRODNR)

CREATE VIEWORDEROVERVIEW(PRODNR,
PRODNAME, TOTQUANTITY)

AS SELECT P.PRODNR, P.PRODNAME,
SUM(POL.QUANTITY)

FROMPRODUCAS P LEFT OUTER JOINPO_LINE

AS POL
ON (P.PRODNR = POL.PRODNR)
GROUP BY°.PRODNR

CREATE UNIQUE INDERRODNR_INDEX
ON PRODUCT(PRODKRBG

GRANTSELECT, INSERT, UPDATE, DELETE
ON SUPPLIERTO BBAESENS

Key Characteristics of SQL

A Setoriented and declarative
A Free form language
A Case insensitive

A Executed interactively from command prompt or by a
program

We won'ft be able

A Very powerful language! to delner our prkct WHATIR
(n time becouse of THen USE
Some, (§sue wifh MJS%L SOMEBOOY ELSE'S

QL, Bor 4

WANT THE

-
\ ™ 3
PrRodueT
IN TiME .
|Brainstuck com I |

Relational databases:
one size fits all ?

o Do Po Do Do

Formal data model based on normalised tables, foreign keys, static and strict
database schema

ACID transactions (atomicity, consistency, isolation, durability)
Vertical scalability, but limited horizontal scalability
Scalability and availability restricted by strong focus on consistency

Application domains:

A Good performance with intensive read/write operations on small(ish) data sets or
large batch processes with limited amount of simultaneous transactions

A Oriented towards structured data, rather than sestiuctured and unstructured data
A5l dlFol as ?dzyf)ij)\zyl- f Ale 602YL) SE lj dzS NJA
compared to application needs

PaS \ 4

YR GKSy OFYS ™8 W

GO gle ﬁ_Linkedm_

A Volume + Variety + Velocity

A Storage of massive amounts of (sestructured and
unstructured, highly dynamic data

A Need for flexible storage structures (no fixed schema)

A Availability and performance often favoured over consistency
A Complex query facilities not always needed: just put/get data
A Need for massive horizontal scalability (server clusters) with

flexible reallocation of data to server nodes ?

A Big Data Analytics
Like .

A Cloud computing and cloud data services

NoSQL databases

A Readasdy2i 2yfté {v]Eé

A Umbrella term for diverse systems with (partially) similar properties:

I No relational data model

I No (or limited) schema restrictions

I Distribution and (nearly linear) horizontal scalability

I Massive replication for availability (failover) and performance (load balancing)
I Diverse types of (often very simple) APIs

I Often emanating from open source community

i Different transaction paradigm: BAS3tagically available, soft state eventually
consistent) instead of ACID

A Other key terms:
I Map/reduce
I Consistent hashing
I multi version concurrency control (MVCC)
I Eventual consistency

Properties of NoSQL databases

A Classification according to data model
I Keyvalue stores

i Document stores

I Columnoriented databases

I Graphbased databases

i X

A Other

I Query faclilities + APIs
I Transaction management and concurrency control

NoSQL Versus SQL

Relational Databases

NoSQL Databases

Dataparadigm

Relational tables

Keyvalue (tuple) based

Document based

Column based

Graph based

XML, object based

Others: time series, probabilistic, etc

Distribution Singlenode and distributed Mainly distributed

Scalability Vertical scaling, harder to scale Easy to scale horizontally, easy data
horizontally replication

Openness Closed and open source Mainly open source

Schema role Schemadriven Mainly schemédree or flexible schema

Query language

SQL as query language

No or simple querying facilities, or
specialpurpose languages

Transaction
mechanism

ACID: Atomicity, Consistency, Isolati
Durability

BASE: Basically available, Soft state
Eventual consistency

Feature set

Many features (triggers, views, store(
procedures, etc.)

Simple API

Data volume

Capable of handling normalzed data
sets

Capable of handling huge amounts g@
data and/or very high frequencies of
read/write requests

To Do Do To I»

To Do o

Keyvalue Stores $

Concept: storage of (key, data value) couples

The unique keys are the only criterion for data retrieval

{U02NB YR NBUONARSOS | ONRPaa YdzZ GALX S y2R
Data values = BLOBs, no meaning, no search criteria

No schema; data interrelations managed at application level

Mainly useful for simple put/get functionality, based on (part of) key
Scalability and performance

Often foundation layer to more complex systems

Examples: Memcached, Redis, Membase, Dynamo (Amazon), Bigtable (Google)

15

S

Keyvalue Stores

import java.util.HashMap;
import java.util.Map;
public class KeyValueStoreExample {
public static void main(String... args) {
I/l Keep track of age based on name
Map<String, Integer> age by name = new HashMap<>();

I/ Store some entries

age_by name.put("wilfried", 34);
age by name.put("seppe”, 30);
age by name.put("bart", 46);
age_by name.put("jeanne”, 19);

/I Get an entry
int age_of wilfried = age_by name.get("wilfried");
System. out .printin("Wilfried's age: " + age_of_wilfried);

I/l Keys are unique
age by name.put("seppe”, 50); // Overrides previous entry

Keyvalue Stores

AvYySea o0SodIdy Gol NIl €2 & a fdladiash
function

I Hash function takes arbitrary value of arbitrary size and maps it to key with
fixed size (hash value)

I Hash can be mapped to space in computer memory

Key Hash Key

wilfried 01 (wilfried,34)
seppe > 03 (seppe,30)
bart 07 (bart,46)

jeanne 08 (jeanne,19)

Keyvalue Stores

A Remember: NoSQL databases built with horizonts
scalability support in mind

A Distribute hash table over different locations

A Assume we need to spread hashes over 3 servers
il AaK SOSNE 1Sé 0agAf FNASI
I Index(hash) = mod(hash, nrServers) + 1

Keyvalue Stores

Key Hash Index (= mod 3 + 1)
wilfried 01 2
seppe > 03 1
bart 07 2
jeanne 08 3
Sharding!
Server #1 Entries Server #2 Entries Server #3 Entries
03 (seppe,30) 01 (wilfried,34) 08 (jeanne,19)
07 (bart,46)

19

Document Stores

Il ?

A Concept: storage of (key, document) couples

A The DBMS is aware of the document type and interprets the document
content

A Document formats: senstructured data, a.0. XML, JSON (JavaScript Obje
b2dFdA2y 0T _la[6. !'a[!'AyUd al N} d

A Documents contain attributes: (key, value) couples. Therefore, we also
speak of tuple stores, i.e. the document is a vector of data

A Document processing (add/change attributes); attributes as search criteric
A Complex data structures and nested objects; no fixed schema

A Examples: CouchDB, MongoDB

Document Stores

A Most Document stores (e.g. MongoDB) choose to represent documents using
JSON

“title": "Harry Potter",
"authors": ['J.K. Rowling", "R.J. Kowling "],
“price": 32.00,
"genres": ["fantasy"],
"dimensions": {
"width": 8.5,
"height™: 11.0,
"depth": 0.5
}

pages": 234,
"in_publication ":true,

"subtitle": null “ mongo

21

Document Stores

A Most NoSQL document stores allow to store items in
tables (collections) in schemass way, but enforce that
primary key be specified

A Document stores exhibit many similarities to relational
databases
I Including query, aggregation and indexing facilities

A MapReduce

I Open source software framework for distributed computing and
storage of large data sets

Document Stores

A Map Reduce

Map-reduce pipeline starts from series of keglue pairs (k1,v1)
and maps each pair to 1 or more output pairs

Output entries shuffled and distributed so that all output entries
belonging to same key are assigned to same worker (e.g.,
physical machines)

Workers then apply reduce function to each group of-kelue
pairs having same key, producing new list of values per output
key

Resulting, final outputs are then (optionally) sorted per key k2 to
produce final outcome

Document Stores

A Example: get a summed count of pages for books per genre
A Create list of input keysalue pairs

k1l vl

1 |{genre:education nrPages120}
2 | {genre: thrillernrPages100}

3 | {genre:fantasy nrPages20}

X | X

A Map function is simple conversion to germePages keyalue pair

function map(k1, v1)
emit output record (v1.genre, vli.nrPages)
end function

Document Stores

A Workers have produced following 3 output lists, with keys
corresponding to genres

Worker 1 Worker 2 Worker 3

k2 v2 k2 v2 k2 v2
education | 120 drama 500 education | 20
thriller 100 education | 200 fantasy 10
fantasy |20

A Working operation started per unigue key k2, for which its
associated list of values will be reduced

I E.g., (education,[120,200,20]) will be reduced to its sum, 340

function reduce(k2, v2_list)

emit output record (k2, sum(v2_list))
end function

Document Stores

A Final output looks as

k2

v3

education

340

thriller

100

drama

500

fantasy

30

A Can be sorted based on k23

GROUP BY style SQL gqueries are convertible to
equivalentMapReduce pipeline

26

Document Stores

00 Apache CouchDE:

Futon Utility Client

| [http://localhost: 5984/ _utils/

hello-world

0 Create Document _.. o Compact Database Q Delete Database Select view: | Custom query...

¥ View Code
Map Function
function(doc) {
var store, price, key;
if (doc.item && doc.prices) {
for (store in doc.prices) {

Reduce Function (optional):

Ao

CouchDB

relax

price = doc.prices[store]; Tools
key = [doc.item, price]; Overview
emit{key, store); Replicator
} Configuration
1 Test Suite

ks
= "_Revert_\' '(_Save_\'
| Valve

["apple”, 8.79] "Apples Express"
D: 84645441 48 1a659f3eb04

Recent Databases

hello-world

[Mapple", 1.59] “Fresh Mart"
D: 8464 5441358d4c48 1a659f3eb8485d0d

[Mapple”, 5.949] "Price Max"
D: 8464 5441358d4c48 1a659f32b8485d0d

["banana", &.79] "Price Max"
D: 9846ec2b214c2087 3cA0500TITEIFE0

["banana", 1.53] "Fresh Mart"
D: D846ec2b214c2087 3cA05E0TIT IR0

["banana", 4.22] "Banana Montana"
D: 9846ec2b214c2087 3cA0500TITEIFE0

["orange", 1.09] "Citrus Circus"

Futen on Apache CouchDB 0.9.0

|« w

27

Columnoriented Databases

A

[2y OSLIY dzy A0 2F a02Nr3IS r NBO2NR 6
values of the same attribute type for a set of records (cf. column in RDBMS)
All values of a storage unit have the same data type

b2 &aG2N)}3IS 2F ydzA t OFfdzSa 6daLl NAS |

Aimed at structured data

{[OFflToOAfAGEY OSNEB STFFAOASYO FIINBIl
(null values)

No/limited support for data interrelations or more complex queries (e.g. joins)

Examples: Cassandtdbase, Google BigTable, Parquet

28

Columnoriented Databases

A Example

Id
1

2
3
4

Genre
fantasy
education
education
fantasy

Title

My first book
Beginners guide
SQL strikes back
The rise of SQL

Price
20
10
40
10

Audiobook price
30

null

null

null

A Row based databases not efficient at performing

operations that apply to entire data set
I Need indexes which add overhead

Columnoriented Databases

A In columnoriented database, all values of column are
placed together on disk

Genre: fantasy:1,4 education:2,3

Title: My first book:1 Beginners guide:2 SQL strikes back:3 The rise of SQL:4
Price: 20:1 10:2,4 40:3

Audiobook price: 30:1

A Operationssuch as: find all records with price equal to 10
can now be executed directly

A Null values do not take up storage spacgymore

A But: retrievingall attributes pertaining to a single entity
becomes less efficient

Bart Seppe

Graphbased Databases

o Do Do Do Do I»

To

Concept: storage of nodes and links/edges

Nodes and links have unique IDs and may also contain (key, attribute) couples to
represent properties (e.g. distance) or link types (e.g. married_to)

Focus on data interrelations >< other NoSQL databases

Flexible interrelations >< RDBMSs

Navigate links instead of (expensive) joins

Sometimes schema definition (e.g. constraints on rinale combinations)

Applications: location based services, knowledge representation, navigation systems,
NEO2YYSYRSNJ aeaidsSvyaz X

Examples: FlockDB (Twitter), InfiniteGraph, Neo4j (+ Cypher)

Graphbased Databases

A Oneto-one, oneto-many, and manyo-many structures can easily
be modeled in a graph

A Consider NV relationship between books and authors
A RDBMS needs 3 tables: Book, Author Bndks Authors

A SQL query to return all book titles for books written by a particular
author would look like follows

SELECTtitle
FROMbooks, authors, books authors
WHERHRuthor.id = books authors.author_id

ANDbooks.id = books authors.book id
AND author.name = "Bart Baesens"

Graphbased Databases

A In a graph database (using Cypher query language from Neo4;)

WROTE

Author Book

WRITTEN_BY

MATCH b:Book)< -[:WRITTEN_BY} (a:Author)
WHERE.name = "Bart Baesens"
RETURNDb.title

Graphbased Databases

Who likes romance books?

MATCH r:Reader) -- (:Book) -- (:Genre
{ name:'romance '})
RETURN.name

2 K2 FNB . IFNIQa FTNASYRA

MATCH me:Reader) -- (friend:Reader) --
(b:Book) -- (g:Genre)

WHERE.name ="'humor' ANDme.name =
‘Bart Baesens'

RETURNDISTINCT friend.name

34

A w5. a{ayY O2yOdz2NNByOeé O2yiNRft OGKNRdIzAK f 2
A impact on performance/throughput, esp. with replicated data

A NoSQL: multiversion concurrency control (MVCC): no locking, but multiple versions
are stored for a data item in chronological order

Read: (hopefully) most recent version(s)
Write = create new versions
Conflicts are solved by DBMS or client

Eventual consistency: asynchronuous propagation of updates; all replicas of a data item
0S02YS O2yaAradasSyid wSoSyldzrtteQr o6dzi y2aG A

Transaction Management and
Concurrency Control

A NoSQL DBMSs do not give up on consistency altogether

A BASE transactions:

I Basically Avallable: measures are in place to guarantee availabilit
under all circumstances, If necessary at the cost of consistency

I Soft State: the state of the database may evolve, even without
external input, due to the asynchronous propagation of updates
throughout the system

I Eventually consistenthe database will become consistent over
time, but may not be consistent at any moment and especially not
at transaction commit

Query facilities and APIs

No standardquerylanguageor API

Keyvaluestores:
I Just APWith keybased put() andget() methods
I OftenREST andf SOAP interface

Documentstores

I RicherAPI; search andhanipulatedocument content
i Wwl y§aeResbn attribute values

Column oriented databases:
I Veryefficientrange andaggregateguerieson attribute values

Graphdatabases:
I Graph pattern matching: find parts of graph that match search pattern
Graph traversal: navigate graph according to predefined path (brefadth depthirst)

|

1

I Veryefficientfor queryingtransitiverelationshipg>< RDBMS)

i FlockDB y2 1jdzSNE €| y3dzr 3Ss 2dzad t221 F2N NBf |
I Dedicated query languages, e.g. Cypher (Neo4J)

37

Query facllities and APIs

A MapReduce: parallel searching and processing of large data volumes in distributed
storage clusters

A In-database analytics
A [26 tSOSt LINPINIYYAYIAT O2yaARSNIOGES WLI dzYoAy

<beep>

38

