
SQL is Dead, Long Live SQL!

Prof. dr. Wilfried Lemahieu

Faculty of Economics and Business

KU Leuven

Wilfried.Lemahieu@kuleuven.be

mailto:Wilfried.Lemahieu@kuleuven.be

Our New Book!

www.pdbmbook.com

2

http://www.pdbmbook.com/
http://www.cambridge.org/be/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/principles-database-management-practical-guide-storing-managing-and-analyzing-big-and-small-data?format=HB&isbn=9781107186125#7GgX5ymaGgpY6fAI.97
http://www.cambridge.org/be/academic/subjects/computer-science/knowledge-management-databases-and-data-mining/principles-database-management-practical-guide-storing-managing-and-analyzing-big-and-small-data?format=HB&isbn=9781107186125#7GgX5ymaGgpY6fAI.97

Author Team

Å Prof. Wilfried Lemahieu

ï professor and dean at KU Leuven (Belgium)

ï Database Management, Data Integration, Data Quality

ïWilfried.Lemahieu@kuleuven.be

Å Prof. Seppe vanden Broucke

ï professor at KU Leuven (Belgium)

ï Process and Data Science

ï Seppe.vandenBroucke@kuleuven.be

Å Prof. Bart Baesens

ï professor at KU Leuven (Belgium) and University of Southampton (UK)

ï Analytics, Credit Risk, Fraud Detection

ï Bart.Baesens@kuleuven.be

3

mailto:Wilfried.Lemahieu@kuleuven.be
mailto:Seppe.vandenBroucke@kuleuven.be
mailto:Bart.Baesens@kuleuven.be

BAAS (Book as a Service)

ÅBook website: www.pdbmbook.com

ïFree YouTube lectures

ïFree PowerPoint slides

ÅAvailable in English, Mandarin and Spanish

ïFree on-line multiple choice quiz tool

ïOnline playground including MySQL, MongoDB, and
Neo4j Cypher (also available as a Dockerfile)

ïSolutions manual

4

http://www.pdbmbook.com/

Overview

ÅSQL and relational databases

ÅNoSQL

ïKey-value stores

ïDocument stores

ïColumn-oriented databases

ïGraph databases

ïTransaction management, APIs, other NoSQL types

ÅEvaluating NoSQL databases: is SQL dead and buried?

5

SQL

ÅFirst version SQL-86 in 1986

ÅMost recent version in 2016
(SQL:2016)

ÅAccepted by
ïAmerican National Standards Institute

(ANSI) in 1986

ï International Organization for
Standardization (ISO) in 1987

ÅEach vendor provides own
implementation
ïSQL dialect

6

SQL: DDL + DML

7

SQL: DDL + DML

8

SELECTSUPNR, SUPNAME
FROMSUPPLIER
WHERESUPCITY = 'San Francisco'
ANDSUPSTATUS > 80

SELECTSUPNAME
FROMSUPPLIER R
WHEREEXISTS

(SELECT*
FROMSUPPLIES S
WHERER.SUPNR = S.SUPNR
ANDS.PRODNR = '0178')

CREATE TABLE SUPPLIER
(SUPNR CHAR(4) NOT NULL PRIMARY KEY,
SUPNAME VARCHAR(40) NOT NULL,
SUPADDRESS VARCHAR(50),
SUPCITY VARCHAR(20),
SUPSTATUS SMALLINT)

DELETE FROM SUPPLIES S1
WHERE S1. PURCHASE_PRICE >

(SELECT 2* AVG(S2.PURCHASE_PRICE)
FROM SUPPLIES S2
WHERE S1.PRODNR = S2.PRODNR)

CREATE VIEW ORDEROVERVIEW(PRODNR,
PRODNAME, TOTQUANTITY)
AS SELECT P.PRODNR, P.PRODNAME,
SUM(POL.QUANTITY)
FROMPRODUCT AS P LEFT OUTER JOIN PO_LINE
AS POL
ON (P.PRODNR = POL.PRODNR)
GROUP BY P.PRODNR

CREATE UNIQUE INDEX PRODNR_INDEX
ON PRODUCT(PRODNR ASC)

GRANTSELECT, INSERT, UPDATE, DELETE
ON SUPPLIER TO BBAESENS

Key Characteristics of SQL

ÅSet-oriented and declarative

ÅFree form language

ÅCase insensitive

ÅExecuted interactively from command prompt or by a
program

ÅVery powerful language!

9

Relational databases:
one size fits all ?

Å Formal data model based on normalised tables, foreign keys, static and strict
database schema

Å ACID transactions (atomicity, consistency, isolation, durability)

Å Vertical scalability, but limited horizontal scalability

Å Scalability and availability restricted by strong focus on consistency

Å Application domains:

Å Good performance with intensive read/write operations on small(ish) data sets or
large batch processes with limited amount of simultaneous transactions

Å Oriented towards structured data, rather than semi-structured and unstructured data

Å 5ŀǘŀōŀǎŜ ŦǳƴŎǘƛƻƴŀƭƛǘȅ όŎƻƳǇƭŜȄ ǉǳŜǊƛŜǎΣ ǘǊŀƴǎŀŎǘƛƻƴ ƳƎƳǘΣ Χύ ƛǎ ǎƻƳŜǘƛƳŜǎ ΨƻǾŜǊƪƛƭƭΩ
compared to application needs

10

!ƴŘ ǘƘŜƴ ŎŀƳŜ ²Ŝō нΦлΧ

ÅVolume + Variety + Velocity

ÅStorage of massive amounts of (semi-)structured and
unstructured, highly dynamic data

ÅNeed for flexible storage structures (no fixed schema)

ÅAvailability and performance often favoured over consistency

ÅComplex query facilities not always needed: just put/get data

ÅNeed for massive horizontal scalability (server clusters) with
flexible reallocation of data to server nodes

ÅBig Data Analytics

ÅCloud computing and cloud data services

11

NoSQL databases

Å Read as: άƴƻǘ ƻƴƭȅ {v[έ

Å Umbrella term for diverse systems with (partially) similar properties:

ï No relational data model

ï No (or limited) schema restrictions

ï Distribution and (nearly linear) horizontal scalability

ï Massive replication for availability (failover) and performance (load balancing)

ï Diverse types of (often very simple) APIs

ï Often emanating from open source community

ï Different transaction paradigm: BASE (basically available, soft state eventually
consistent) instead of ACID

Å Other key terms:

ï Map/reduce

ï Consistent hashing

ï multi version concurrency control (MVCC)

ï Eventual consistency
12

Properties of NoSQL databases

ÅClassification according to data model
ïKey-value stores

ïDocument stores

ïColumn-oriented databases

ïGraph-based databases

ïΧ

ÅOther
ïQuery facilities + APIs

ïTransaction management and concurrency control
13

NoSQL Versus SQL

14

Relational Databases NoSQL Databases
Data paradigm Relational tables Key-value (tuple) based

Document based
Column based
Graph based
XML, object based
Others: time series, probabilistic, etc.

Distribution Single-node and distributed Mainly distributed
Scalability Vertical scaling, harder to scale

horizontally
Easy to scale horizontally, easy data
replication

Openness Closed and open source Mainly open source
Schema role Schema-driven Mainly schema-free or flexible schema
Query language SQL as query language No or simple querying facilities, or

special-purpose languages
Transaction
mechanism

ACID: Atomicity, Consistency, Isolation,
Durability

BASE: Basically available, Soft state,
Eventual consistency

Feature set Many features (triggers, views, stored
procedures, etc.)

Simple API

Data volume Capable of handling normal-sized data
sets

Capable of handling huge amounts of
data and/or very high frequencies of
read/write requests

Å Concept: storage of (key, data value) couples

Å The unique keys are the only criterion for data retrieval

Å {ǘƻǊŜ ŀƴŘ ǊŜǘǊƛŜǾŜ ŀŎǊƻǎǎ ƳǳƭǘƛǇƭŜ ƴƻŘŜǎ ōȅ ƘŀǎƘƛƴƎ ǘƘŜ ƪŜȅ όΨŎƻƴǎƛǎǘŜƴǘ ƘŀǎƘƛƴƎΩύ

Å Data values = BLOBs, no meaning, no search criteria

Å No schema; data interrelations managed at application level

Å Mainly useful for simple put/get functionality, based on (part of) key

Å Scalability and performance

Å Often foundation layer to more complex systems

Å Examples: Memcached, Redis, Membase, Dynamo (Amazon), Bigtable (Google)

Key-value Stores

15

Key-value Stores
import java.util.HashMap;

import java.util.Map;

public class KeyValueStoreExample {

public static void main(String... args) {

// Keep track of age based on name

Map<String, Integer> age_by_name = new HashMap<>();

// Store some entries

age_by_name.put("wilfried", 34);

age_by_name.put("seppe", 30);

age_by_name.put("bart", 46);

age_by_name.put("jeanne", 19);

// Get an entry

int age_of_wilfried = age_by_name.get("wilfried");

System. out .println("Wilfried's age: " + age_of_wilfried);

// Keys are unique

age_by_name.put("seppe", 50); // Overrides previous entry

}

} 16

Key-value Stores

ÅYŜȅǎ όŜΦƎΦΣ άōŀǊǘέΣ άǎŜǇǇŜέύ ŀǊŜ ƘŀǎƘŜŘ ōȅ ƳŜŀƴǎ ƻŦ ǎƻ-called hash
function
ïHash function takes arbitrary value of arbitrary size and maps it to key with

fixed size (hash value)

ïHash can be mapped to space in computer memory

17

Key-value Stores

ÅRemember: NoSQL databases built with horizontal
scalability support in mind

ÅDistribute hash table over different locations

ÅAssume we need to spread hashes over 3 servers

ïIŀǎƘ ŜǾŜǊȅ ƪŜȅ όάǿƛƭŦǊƛŜŘέΣ άǎŜǇǇŜέύ ǘƻ ǎŜǊǾŜǊ ƛŘŜƴǘƛŦƛŜǊ

ïindex(hash) = mod(hash, nrServers) + 1

18

Key-value Stores

19

Sharding!

Document Stores

Å Concept: storage of (key, document) couples

Å The DBMS is aware of the document type and interprets the document
content

Å Document formats: semi-structured data, a.o. XML, JSON (JavaScript Object
bƻǘŀǘƛƻƴύΣ ¸!a[ό¸!a[!ƛƴϥǘ aŀǊƪǳǇ [ŀƴƎǳŀƎŜύΣ Χ

Å Documents contain attributes: (key, value) couples. Therefore, we also
speak of tuple stores, i.e. the document is a vector of data

Å Document processing (add/change attributes); attributes as search criteria

Å Complex data structures and nested objects; no fixed schema

Å Examples: CouchDB, MongoDB

20

Document Stores

Å Most Document stores (e.g. MongoDB) choose to represent documents using
JSON

{

"title": "Harry Potter",

"authors": ["J.K. Rowling", "R.J. Kowling "],

"price": 32.00,

"genres": ["fantasy"],

"dimensions": {

"width": 8.5,

"height": 11.0,

"depth": 0.5

},

"pages": 234,

" in_publication ": true,

"subtitle": null

}

21

Document Stores

ÅMost NoSQL document stores allow to store items in
tables (collections) in schema-less way, but enforce that
primary key be specified

ÅDocument stores exhibit many similarities to relational
databases

ïIncluding query, aggregation and indexing facilities

ÅMapReduce

ïOpen source software framework for distributed computing and
storage of large data sets

22

Document Stores

ÅMap Reduce

ïMap-reduce pipeline starts from series of key-value pairs (k1,v1)
and maps each pair to 1 or more output pairs

ïOutput entries shuffled and distributed so that all output entries
belonging to same key are assigned to same worker (e.g.,
physical machines)

ïWorkers then apply reduce function to each group of key-value
pairs having same key, producing new list of values per output
key

ïResulting, final outputs are then (optionally) sorted per key k2 to
produce final outcome

23

Document Stores

ÅExample: get a summed count of pages for books per genre

ÅCreate list of input keys-value pairs

ÅMap function is simple conversion to genre-nrPages key-value pair
function map(k1, v1)

emit output record (v1.genre, v1.nrPages)

end function

k1 v1
1 {genre: education, nrPages: 120}
2 {genre: thriller, nrPages: 100}
3 {genre: fantasy, nrPages: 20}
Χ Χ

24

Document Stores

ÅWorkers have produced following 3 output lists, with keys
corresponding to genres

ÅWorking operation started per unique key k2, for which its
associated list of values will be reduced
ïE.g., (education,[120,200,20]) will be reduced to its sum, 340

function reduce(k2, v2_list)
emit output record (k2, sum(v2_list))

end function

Worker 1
k2 v2
education 120
thriller 100
fantasy 20

Worker2
k2 v2

drama 500
education 200

Worker3
k2 v2
education 20
fantasy 10

25

Document Stores

ÅFinal output looks as

ÅCan be sorted based on k2 or v3

GROUP BY style SQL queries are convertible to
equivalent MapReduce pipeline

26

k2 v3
education 340
thriller 100
drama 500
fantasy 30

27

Document Stores

Column-oriented Databases

Å /ƻƴŎŜǇǘΥ ǳƴƛǘ ƻŦ ǎǘƻǊŀƎŜ ґ ǊŜŎƻǊŘ ǿƛǘƘ ŀǘǘǊƛōǳǘŜ ǾŀƭǳŜǎ όŀǎ ƛƴ w5.a{ύΣ ōǳǘ ǘƘŜ
values of the same attribute type for a set of records (cf. column in RDBMS)

Å All values of a storage unit have the same data type

Å bƻ ǎǘƻǊŀƎŜ ƻŦ ƴǳƭƭ ǾŀƭǳŜǎ όάǎǇŀǊǎŜ Řŀǘŀέύ Ҕғ w5.a{ǎ

Å Aimed at structured data

Å {ŎŀƭŀōƛƭƛǘȅΣ ǾŜǊȅ ŜŦŦƛŎƛŜƴǘ ŀƎƎǊŜƎŀǘƛƻƴ ƻŦ ǾŀƭǳŜǎ όǎǳƳΣ ŀǾŜǊŀƎŜΣ Χύ Ҍ ǎǇŀǊǎŜ Řŀǘŀ
(null values)

Å No/limited support for data interrelations or more complex queries (e.g. joins)

Å Examples: Cassandra, Hbase, Google BigTable, Parquet

28

Column-oriented Databases

ÅExample
Id Genre Title Price Audiobook price

1 fantasy My first book 20 30

2 education Beginners guide 10 null

3 education SQL strikes back 40 null

4 fantasy The rise of SQL 10 null

ÅRow based databases not efficient at performing
operations that apply to entire data set

ïNeed indexes which add overhead

29

Column-oriented Databases

ÅIn column-oriented database, all values of column are
placed together on disk
Genre: fantasy:1,4 education:2,3

Title: My first book:1 Beginners guide:2 SQL strikes back:3 The rise of SQL:4

Price: 20:1 10:2,4 40:3

Audiobook price: 30:1

ÅOperations such as: find all records with price equal to 10
can now be executed directly

ÅNull values do not take up storage space anymore

ÅBut: retrieving all attributes pertaining to a single entity
becomes less efficient

30

Graph-based Databases

Å Concept: storage of nodes and links/edges

Å Nodes and links have unique IDs and may also contain (key, attribute) couples to
represent properties (e.g. distance) or link types (e.g. married_to)

Å Focus on data interrelations >< other NoSQL databases

Å Flexible interrelations >< RDBMSs

Å Navigate links instead of (expensive) joins

Å Sometimes schema definition (e.g. constraints on node-link combinations)

Å Applications: location based services, knowledge representation, navigation systems,
ǊŜŎƻƳƳŜƴŘŜǊ ǎȅǎǘŜƳǎΣ Χ

Å Examples: FlockDB (Twitter), InfiniteGraph, Neo4j (+ Cypher)

31

Graph-based Databases

ÅOne-to-one, one-to-many, and many-to-many structures can easily
be modeled in a graph

ÅConsider N-M relationship between books and authors

ÅRDBMS needs 3 tables: Book, Author and Books_Authors

ÅSQL query to return all book titles for books written by a particular
author would look like follows

SELECTtitle

FROMbooks, authors, books_authors

WHEREauthor.id = books_authors.author_id

ANDbooks.id = books_authors.book_id
ANDauthor.name = "Bart Baesens"

32

Graph-based Databases

Å In a graph database (using Cypher query language from Neo4j)

MATCH(b:Book)< - [:WRITTEN_BY]- (a:Author)

WHEREa.name = "Bart Baesens"

RETURNb.title

33

Graph-based Databases

34

Who likes romance books?

MATCH(r:Reader) -- (:Book) -- (:Genre
{ name:'romance '})
RETURNr.name

²Ƙƻ ŀǊŜ .ŀǊǘΩǎ ŦǊƛŜƴŘǎ ǘƘŀǘ ƭƛƪŜŘ IǳƳƻǊ ōƻƻƪǎΚ

MATCH(me:Reader) -- (friend:Reader) --
(b:Book) -- (g:Genre)
WHEREg.name = 'humor' ANDme.name =
'Bart Baesens'
RETURNDISTINCT friend.name

Transaction Management and
Concurrency Control

Å w5.a{ǎΥ ŎƻƴŎǳǊǊŜƴŎȅ ŎƻƴǘǊƻƭ ǘƘǊƻǳƎƘ ƭƻŎƪƛƴƎΣ ŀǘƻƳƛŎ ǘǊŀƴǎŀŎǘƛƻƴǎ όΨ!/L5Ωύ

Ą impact on performance/throughput, esp. with replicated data

Å NoSQL: multiversion concurrency control (MVCC): no locking, but multiple versions
are stored for a data item in chronological order

ï Read: (hopefully) most recent version(s)

ï Write = create new versions

ï Conflicts are solved by DBMS or client

ï Eventual consistency: asynchronuous propagation of updates; all replicas of a data item
ōŜŎƻƳŜ ŎƻƴǎƛǎǘŜƴǘ ΨŜǾŜƴǘǳŀƭƭȅΩΣ ōǳǘ ƴƻǘ ƛƳƳŜŘƛŀǘŜƭȅ ŀǎ ǿƛǘƘ !/L5 όŎŦΦ ǘǿŜŜǘǎ ƛƴ ŀ {bύ

35

ÅNoSQL DBMSs do not give up on consistency altogether

ÅBASE transactions:

ïBasically Available: measures are in place to guarantee availability
under all circumstances, if necessary at the cost of consistency

ïSoft State: the state of the database may evolve, even without
external input, due to the asynchronous propagation of updates
throughout the system

ïEventually consistent: the database will become consistent over
time, but may not be consistent at any moment and especially not
at transaction commit

36

Transaction Management and
Concurrency Control

Query facilities and APIs

Å No standardquery languageor API

Å Key-valuestores:
ï Just API with keybased put() and get() methods
ïOftenREST and/or SOAP interface

Å Document stores:
ïRicherAPI; search and manipulatedocument content
ïΨwŀƴƎŜΩ querieson attribute values

Å Column oriented databases:
ï Veryefficient range and aggregatequerieson attribute values

Å Graphdatabases:
ï Graph pattern matching: find parts of graph that match search pattern
ï Graph traversal: navigate graph according to predefined path (breadth-first, depth-first)

ï Veryefficient for queryingtransitiverelationships(>< RDBMS)

ï FlockDBΥ ƴƻ ǉǳŜǊȅ ƭŀƴƎǳŀƎŜΣ Ƨǳǎǘ ƭƻƻƪ ŦƻǊ ǊŜƭŀǘŜŘ Řŀǘŀ ƛǘŜƳǎ όΨŦƻƭƭƻǿǎΩ ƛƴ ¢ǿƛǘǘŜǊύ

ï Dedicated query languages, e.g. Cypher (Neo4J)

37

Å MapReduce: parallel searching and processing of large data volumes in distributed
storage clusters

Å In-database analytics

Å [ƻǿ ƭŜǾŜƭ ǇǊƻƎǊŀƳƳƛƴƎΤ ŎƻƴǎƛŘŜǊŀōƭŜ ΨǇƭǳƳōƛƴƎΩ

<beep>

38

Query facilities and APIs

