I will present a four-term exact sequence relating the cohomology of a fibration to the cohomology of an open set obtained by removing the preimage of a general linear section of the base. This exact sequence respects three filtrations, the Hodge, weight, and perverse Leray filtrations, so that it is an exact sequence of mixed

Hodge structures on the graded pieces of the perverse Leray filtration. I claim that this sequence should be thought of as a mirror to the Clemens-Schmid sequence describing the structure of a degeneration and formulate a "mirror P=W" conjecture relating the filtrations on each side. Finally, I will present evidence for this conjecture coming from the K3 surface setting. This is joint work with Charles F. Doran.

# Past Algebraic Geometry Seminar

The ordinary braid group ${\mathrm Br}_n$ is a well-known algebraic structure which encodes configurations of $n$ non-touching strands (“braids”) up to continious transformations (“isotopies”). A classical result of Khovanov and Thomas states that there is a natural categorical action of ${\mathrm Br}_n$ on the derived category of the cotangent bundle of the variety of complete flags in ${\mathbb C}^n$.

In this talk, I will introduce a new structure: the category ${\mathrm GBr}_n$ of generalised braids. These are the braids whose strands are allowed to touch in a certain way. They have multiple endpoint configurations and can be non-invertible, thus forming a category rather than a group. In the context of triangulated categories, it is natural to impose certain relations which result in the notion of a skein-triangulated representation of ${\mathrm GBr}_n$. A decade-old conjecture states that there is a skein-triangulated action of ${\mathrm GBr}_n$ on the cotangent bundles of the varieties of full and partial flags in ${\mathbb C}^n$. We prove this conjecture for $n = 3$. We also show that, in fact, any categorical action of ${\mathrm Br}_n$ can be lifted to a categorical action of ${\mathrm GBr}_n$, generalising a result of Ed Segal. This is a joint work with Rina Anno and Lorenzo De Biase.

There are various notions of rank, which measure the complexity of a tensor or polynomial. Cubic surfaces can be viewed as symmetric tensors. We consider the non-symmetric tensor rank and the symmetric Waring rank of cubic surfaces, and show that the two notions coincide over the complex numbers. The results extend to order three tensors of all sizes, implying the equality of rank and symmetric rank when the symmetric rank is at most seven. We then explore the connection between the rank of a polynomial and the singularities of its vanishing locus, and we find the possible singular loci of a cubic surface of given rank. This talk is based on joint work with Eunice Sukarto.

Mirror symmetry, in a crude formulation, is usually presented as a correspondence between curve counting on a Calabi-Yau variety X, and some invariants extracted from a mirror family of Calabi-Yau varieties. After the physicists Bershadsky-Cecotti-Ooguri-Vafa (henceforth BCOV), this is organised according to the genus of the curves in X we wish to enumerate, and gives rise to an infinite recurrence of differential equations. In this talk, I will give a general introduction to these problems, and present a rigorous mathematical formulation of the BCOV conjecture at genus one, in terms of a lifting of the Grothendieck-Riemann-Roch. I will explain the main ideas of the proof of the conjecture for Calabi-Yau hypersurfaces in projective space, based on the Riemann-Roch theorem in Arakelov geometry. Our results generalise from dimension 3 to arbitrary dimensions previous work of Fang-Lu-Yoshikawa.

This is joint work with G. Freixas and C. Mourougane.

Tautological bundles on Hilbert schemes of points often enter into enumerative and physical computations. I will explain how to use the Donaldson-Thomas theory of toric threefolds to produce combinatorial identities that are expressed geometrically using tautological bundles on the Hilbert scheme of points on a surface. I'll also explain how these identities can be used to study Euler characteristics of tautological bundles over Hilbert schemes of points on general surfaces.

## Further Information:

In a joint work with Davesh Maulik and Yukinobu Toda, we proposed a conjectural Gopakumar-Vafa type formula for the generating series of stable pair invariants on Calabi-Yau 4-folds. In this talk, I will present the recent joint work with Yukinobu Toda on how to give an interpretation of the above GV type formula in terms of wall-crossing phenomena in the derived category of coherent sheaves.

The hard Lefschetz theorem is a fundamental statement about the symmetry of the cohomology of algebraic varieties. In nearly all cases that we systematically understand it, it comes with a geometric meaning, often in form of Hodge structures and signature data for the Hodge-Riemann bilinear form.

Nevertheless, similar to the role the standard conjectures play in number theory, several intriguing combinatorial problems can be reduced to hard Lefschetz properties, though in extreme cases without much geometric meaning, lacking any existence of, for instance, an ample cone to do Hodge theory with.

I will present a way to prove the hard Lefschetz theorem in such a situation, by introducing biased pairing and perturbation theory for intersection rings. The price we pay is that the underlying variety, in a precise sense, has itself to be sufficiently generic. For instance, we shall see that any quasismooth, but perhaps nonprojective toric variety can be "perturbed" to a toric variety with the same equivariant cohomology, and that has the hard Lefschetz property.

Finally, I will discuss how this applies to prove some interesting theorems in geometry, topology and combinatorics. In particular, we shall see a generalization of a classical result due to Descartes and Euler: We prove that if a simplicial complex embeds into euclidean 2d-space, the number of d-simplices in it can exceed the number of (d-1)-simplices by a factor of at most d+2.

This talk is an update on joint work with Geoff Penington on extending Morse theory to smooth functions on compact manifolds with very mild nondegeneracy assumptions. The only requirement is that the critical locus should have just finitely many connected components. To such a function we associate a quiver with vertices labelled by the connected components of the critical locus. The analogue of the Morse–Witten complex in this situation is a spectral sequence of multicomplexes supported on this quiver which abuts to the homology of the manifold.

Enumerative algebraic geometry counts the solutions to certain geometric constraints. Numerical algebraic geometry determines these solutions for any given

instance. This lecture illustrates how these two fields complement each other, especially in the light of emerging new applications. We start with a gem from

the 19th century, namely the 3264 conics that are tangent to five given conics in the plane. Thereafter we turn to current problems in statistics, with focus on

maximum likelihood estimation for linear Gaussian covariance models.

Donaldson-Thomas invariants of a Calabi-Yau 3-fold Y are related to Pandharipande-Thomas invariants via a wall-crossing formula known as the DT/PT correspondence, proved by Bridgeland and Toda. The same relation holds for the “local invariants”, those encoding the contribution of a fixed smooth curve in Y. We show how to lift the local DT/PT correspondence to the motivic level and provide an explicit formula for the local motivic invariants, exploiting the critical structure on certain Quot schemes acting as our local models. Our strategy is parallel to the one used by Behrend, Bryan and Szendroi in their definition and computation of degree zero motivic DT invariants. If time permits, we discuss a further (conjectural) cohomological upgrade of the local DT/PT correspondence.

Joint work with Ben Davison.