
Accessing Databases and Database APIs

www.pdbmbook.com

http://www.pdbmbook.com/

Introduction

• Database System Architectures

• Database APIs

• Object Persistence and Object Relational Mappers

• Database Access in the World Wide Web

• Conclusion

2

Database System Architectures

• Centralized System Architecture

– all responsibilities of the DBMSs are handled by one
centralized entity (e.g. mainframe database)

– has become rare, expensive, and difficult to maintain

3

Database System Architectures

• Tiered System Architectures

– aim to decouple the centralized setup by combining
the computing capabilities of powerful central
computers with the flexibility of PCs

• Multiple variants of this architecture

– E.g., two-tier architecture (a.k.a. client-server
architecture)

4

Database System Architectures

• “Fat” client variant

– presentation logic and application logic are handled by
the client

– common in cases where it makes sense to couple an
application’s workflow with its look-and-feel

– DBMS now fully runs on the database server

5

Database System Architectures

• “Thin” client variant

– only the presentation logic is handled by the client

– applications and database commands executed on the
server

– common when application logic and database logic are
tightly coupled or similar

6

Database System Architectures

• Three-tier architecture: decouple application logic from
the DBMS and put it in a separate layer (i.e., application
server).

• Note: “application server” or “database server” may
consist of multiple physical, distributed machines

7

Database APIs

• In a tiered DBMS system architecture, client
applications are able to query database servers
and receive the results

• Client applications that wish to utilize the services
provided by a DBMS use a specific API provided by
the DBMS

• This database API exposes an interface through
which client applications can access and query a
DBMS

8

Database APIs

• Database server receives calls made by clients and
executes the relevant operations before returning
the results

• In many cases, the client- and server-interfaces are
implemented to work over a computer network
using network sockets

• The main goal of database APIs is to expose an
interface through which other parties can utilize the
services provided by the DBMS

9

Database APIs

10

Proprietary Versus Universal APIs

• Most DBMS vendors provide a proprietary, DBMS-
specific API

– disadvantage is that client applications must be aware
of the DBMS that will be utilized on the server-side

• Alternatively, generic, vendor-agnostic universal
APIs have been proposed,

– allow to easily port applications to multiple DBMSs

11

Embedded Versus Call-level APIs

• APIs can be embedded or call-level

• Embedded API embeds SQL statements in the host
programming language, meaning that SQL statement(s)
will be part of the source code

– before the program is compiled, a “SQL pre-compiler” parses
the SQL-related instructions and replaces these with source
code instructions native to the host programming language used

– converted source code is then sent to the actual compiler

12

Embedded Versus Call-level APIs

• Advantages of embedded APIs

– pre-compiler can perform specific syntax checks

– pre-compiler can also perform an early binding step which helps
to generate an efficient query plan before the program is run,
hence improving performance (see later)

• Disadvantages of embedded APIs

– Harder to maintain code

• Embedded database APIs not very popular

• Example: SQLJ

13

Embedded Versus Call-level APIs

• Call-level APIs work by passing SQL instructions to the
DBMS by means of direct calls to a series of procedures,
functions or methods as provided by the API to perform
the necessary actions

• Example: ODBC

14

Early Binding Versus Late Binding

• SQL binding refers to the translation of SQL code to a
lower-level representation that can be executed by the
DBMS, after performing tasks such as validation of table
and field names, checking whether the user or client has
sufficient access rights, and generating a query plan to
access the physical data in the most performant way
possible.

• Early versus late binding then refers to the actual moment
when this binding step is performed

15

Early Binding Versus Late Binding

• Early binding is possible in case a pre-compiler is
used and can hence only be applied with an
embedded API

– beneficial in terms of performance

– binding only needs to be performed once

– pre-compiler can perform specific syntax checks

16

Early Binding Versus Late Binding

• Late binding performs the binding of SQL-
statements at runtime

– additional flexibility is offered (“dynamic SQL”)

– syntax errors or authorisation issues will remain hidden
until the program is executed

– testing the application can be harder

– less efficient for queries that must be executed
multiple times

17

Early Binding Versus Late Binding

• For embedded APIs, the involvement of a pre-
compiler implies early binding

• For call-level APIs, late-binding will be used

– it is possible even when using call-level APIs to pre-
compile SQL statements and call these at runtime, by
defining such statements as “stored procedures” in the
DBMS

18

Early Binding Versus Late Binding

19

Embedded APIs Call-level APIs

Early binding

(“static” SQL)

Possible as a pre-compiler is used

• Performance benefit, especially when the

same query must be executed many times

• Pre-compiler detects errors before the

actual execution of the code

• SQL queries must be known upfront

Only possible through stored procedures

Late binding

(“dynamic” SQL)

Not used with embedded APIs Necessary as no pre-compiler is used

• Flexibility benefit: SQL statements can be dynamically

generated and used during execution

• Errors are only detected during program execution

• Possibility to use prepared SQL statements to perform

binding once during execution

Universal Database APIs

• Many different universal API standards have been
proposed over the years, which differ in terms of

– embedded or call-level

– programming language(s)

– functionalities

20

ODBC

• Open DataBase Connectivity (ODBC)

– open standard, developed by Microsoft, with the aim
to offer applications a common, uniform interface to
various DBMSs

21

ODBC

• ODBC consists of 4 main components

– ODBC API: universal interface through which client
applications will interact with a DBMS (a call-level API)

– ODBC Driver Manager: responsible for selecting the
correct Database Driver to communicate with a DBMS

– Database Driver: collection of routines that contain the
actual code to communicate with a DBMS

– Service Provider Interface (SPI): separate interface
implemented by the DBMS vendor by which the Driver
Manager interacts with various drivers

22

ODBC

23

ODBC

• ODBC allows applications to be easily
ported between DBMSs

• Disadvantages
–ODBC is native to Microsoft-based platforms

–ODBC is based on the C language (↔ OO)

–ODBC middleware introduces an extra layer of
indirection (performance ↓)

24

OLE DB and ADO

• OLE DB (Object Linking and Embedding for DataBases) was a
follow-up specification to ODBC to allow uniform access to a
variety of data sources using Microsoft’s Component Object
Model (COM)

• OLE DB also supports object databases, spreadsheets and
other data sources

• Functionality such as querying can be provided by the data
provider, but also by other components

• As such, OLE DB represents Microsoft’s attempt to move
towards a “Universal Data Access” approach

25

OLE DB and ADO

• OLE DB can be combined with ActiveX Data Objects (ADO), which
provides a richer, more ‘programmer-friendly’ programming model on
top of OLE DB

Dim conn As ADODB.Connection

Dim recordSet As ADODB.Recordset

Set conn = New ADODB.Connection

conn.Open(“my_database”)

Set qry = “select nr, name from suppliers where status < 30”

Set recordSet = cnn.Execute(qry)

Do While Not recordSet.EOF

MsgBox(recordSet.Fields(0).Name & “ = “ & recordSet.Fields(0).Value & vbCrLf & _
recordSet.Fields(1).Name & “ = “ & recordSet.Fields(1).Value)

recordSet.MoveNext

Loop

recordSet.Close

conn.Close

26

ADO.NET

• OLE DB and ADO were merged into ADO.NET (based on
the .NET framework)

• Like OLE DB, ADO.NET breaks down all database-related
access features into a set of components.

– To access data, ADO.NET offers a series of data providers, which
are broken down into a series of objects handling creation of
database connections, sending queries and reading results

27

ADO.NET

28

ADO.NET

String connectionString = “Data Source=(local);Initial Catalog=example;”

SqlConnection conn = new SqlConnection(connectionString)

conn.Open();

String query1 = “select avg(num_pages) from books”;

String query2 = “select title, author from books where num_pages > 30”;

SqlCommand command1 = conn.CreateCommand();

SqlCommand command2 = conn.CreateCommand();

command1.CommandText = query1;

command2.CommandText = query2;

int average_pages = command1.ExecuteScalar();

SqlDataReader dataReader = command2.ExecuteReader();

String title;

String author;

while (dataReader.Read()) {

title = dataReader.GetString(0);

author = dataReader.GetString(1);

Console.Writeln(title + “ by “ + author);

}

dataReader.Close();

conn.Close();

29

JDBC

• Java DataBase Connectivity (JDBC) offers a
call-level database API

– inspired by ODBC but developed to be used in Java

– high portability and the ability to program in an OO
way

– database connections, drivers, queries and results are
thus all expressed as objects, based on uniform
interfaces and hence exposing a uniform set of
methods, no matter which DBMS is utilized

30

JDBC

31

JDBC
• JDBC exposes a series of object interfaces through which drivers, connections,

SQL statements and results are expressed

32

JDBC

• DriverManager is a singleton object which acts as the basic
service to manage JDBC drivers

• DBMS driver must be registered with the DriverManager,
using the registerDriver method

• Database connections can be created using one of the
registered drivers by means of the getConnection method

– takes a String parameter representing connection URL:
“jdbc:subprotocol:subname” (e.g. “jdbc:sqlite:my_database”)

– can also take username and password parameters

33

JDBC

DriverManager.registerDriver(new org.sqlite.JDBC());

String dbURL = "jdbc:sqlite:my_database";

Connection conn = DriverManager.getConnection(dbURL);

if (conn != null) {

System.out.println("Connected to the database");

DatabaseMetaData dm = conn.getMetaData();

System.out.println("Driver name: " + dm.getDriverName);

conn.close();

}

34

JDBC

• Note that many drivers will also register
themselves automatically

– version 4 of JDBC even does away with the need to
register drivers

• Driver objects registered with the DriverManager
implement the Driver interface and enable
communication between DriverManager and
DBMS

• To implement the interface, database vendors can
decide between different so-called driver “types”

35

JDBC

• Type-1 drivers (JDBC-ODBC bridge drivers) do not communicate with a
DBMS directly, but instead translate JDBC calls to corresponding ODBC
calls

• Type-2 drivers (JDBC-Native API drivers) are written in Java, but will
communicate to a DBMS using its “native” database API.

• Type-3 drivers (JDBC-Net drivers) are written in Java. The JDBC client
will use standard networking sockets to communicate with an
application server, which converts the calls into a native database API
call or utilizes a different JDBC type-1, 2 or 4 driver on its end.

• Type-4 drivers are also written in Java and use networking functionality,
though here, a direct connection is made with the database server. The
driver thus communicates directly with the DBMS over the network.

36

JDBC

• Opening a connection returns a Connection object, representing a
session to a specific database

• The createStatement method can be used to create SQL statements

• The prepareStatement and prepareCall methods can be used to
create objects representing prepared statements and stored
procedure calls

• A Statement object represents an SQL instruction
– For a SELECT query, the executeQuery method should be invoked, which

returns a ResultSet

Statement selectStatement = conn.createStatement(“select * from
books”);

ResultSet selectResult = selectStatement.executeQuery();

37

JDBC

• A ResultSet object contains the result of a SELECT query
that was executed by a Statement object

• Because SQL is set-oriented, the query result will
generally comprise multiple tuples

• Host languages such as Java are record-oriented

– cannot handle more than one tuple at a time

• To overcome this impedance mismatch, JDBC (like ODBC)
uses a cursor mechanism in order to loop through result
sets

– A cursor is a programmatic control structure that enables one by
one traversal over the records in a query result set

38

JDBC

while (selectResult.next()) {

String bookTitle = selectResult.getString("title");
// or: .getString(1);

int bookPages = selectResult.getInt("num_pages");
// or: .getInt(2);

System.out.println(bookTitle + “ has ” + bookPages + “ pages”);

}

39

JDBC
• For INSERT, UPDATE or DELETE queries, the executeUpdate

method should be called

– return value is an integer representing the number of rows affected

String deleteQuery = “delete from books where num_pages <= 30”;

Statement deleteStatement = conn.createStatement();

int deletedRows = deleteStatement.executeUpdate(deleteQuery);

System.out.println(deletedRows + “ books were deleted”);

• Generic execute method returns a Boolean value representing
whether the just-executed query was a SELECT query, based
on which the program can decide to call the getResultSet
method

40

JDBC

• PreparedStatement interface extends Statement
with functionalities to bind a query once and then
execute it multiple times in an efficient manner

• Prepared statements also provide support to pass
query parameters, which should then be instantiated
using “setter methods” such as setInt, setString, …

– use question marks (“?”) inside the SQL query to indicate
that this represents a parameter value

41

JDBC
String selectQuery = “select * from books where num_pages < ? and num_pages >
?”;

Statement preparedSelectStatement = conn.prepareStatement(selectQuery);

int min_pages = 50;

int max_pages = 200;

// Set the value to the first parameter (1):

preparedSelectStatement.setInt(1, min_pages);

// Set the value to the second parameter (2):

preparedSelectStatement.setInt(2, max_pages);

ResultSet resultSet1 = preparedSelectStatement.executeQuery();

// Execute the same query a second time with different parameter values:

preparedSelectStatement.setInt(1, 10);

preparedSelectStatement.setInt(2, 20);

ResultSet resultSet2 = preparedSelectStatement.executeQuery();

42

JDBC

• CallableStatement extends PreparedStatement and
offers support to execute stored procedures

• JDBC supports updatable result sets, where rows in a
result set can be updated on the fly

• Connection interface also defines commit, rollback,
setTransactionIsolation, setAutoCommit, setSavepoint
and releaseSavepoint methods

• JDBC API provides no explicit method to start a
transaction

• JDBC remains widely popular!

43

SQLJ

• SQLJ, Java’s embedded, static SQL API, was developed after JDBC and allows
embedding SQL statements directly into Java programs

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

Connection conn = DriverManager.getConnection(dbUrl);

DefaultContext.setDefaultContext(new DefaultContext(conn));

// Define an SQLJ iterator

#sql iterator BookIterator(String, String, int);

// Perform query and fetch results

BookIterator books;

int min_pages = 100;

#sql books = {select title, author, num_pages from books where num_pages >= :min_pages };

String title; String author; int num_pages;

#sql {fetch :books into :title, :author, :num_pages};

while (!books.endFetch()) {

System.out.println(title + ‘ by ‘ + author + ‘: ‘ + num_pages);

#sql {fetch :books into :title, :author, :num_pages};

}

conn.close();

44

SQLJ

• Queries directly embedded in Java source code

– pre-compiler converts these statements into native Java code

– pre-compiler also performs additional checks

– arguments for embedded SQL statements are passed through
host variables (using “:” prefix)

– compile-time checking cannot be performed when using late-
bound parameters

• SQLJ never experienced the success of JDBC due to

– lack of support for dynamic SQL

– extra overhead for programmer

45

Language-integrated Querying

• Key JDBC drawback is the lack of compile-time type
checking and validation (e.g., no syntactic and semantic
SQL checks)

• Modern programming languages use language-native
query expressions into their syntax which are often able
to operate on any collection of data (e.g., a database,
XML documents)

– when targeting a DBMS, these expressions are converted to SQL,
which can then be sent off to the target DBMS using JDBC or
another API

46

Language-integrated Querying

• Example: jOOQ
– provides the benefits of embedded SQL using pure Java, rather than resorting

to an additional pre-compiler

– a code generator is run first that inspects the database schema and reverse-
engineers it into a set of Java classes representing tables, records, and other
schema entities

– these can then be queried and invoked using plain Java code

String sql = create.select(BOOK.TITLE, AUTHOR.NAME)

.from(BOOK)

.join(AUTHOR)

.on(BOOK.AUTHOR_ID.equal(AUTHOR.ID))

.where(BOOK.NUM_PAGES.greaterThan(100))

.getSQL();
47

Language-integrated Querying

• Since now only pure Java code is used to express
statements, IDEs do not need to be aware of a separate
language, no pre-compiler is necessary, and the standard
Java compiler can be used to perform type safety checks
and generate compilation errors when necessary

• Other examples

– QueryDSL

– Microsoft’s LINQ (Language Integrated Query)

48

Object Persistence and ORMs

• API technologies such as JDBC and ADO.NET
represent database related entities (e.g. tables,
records) in an OO way

• Object persistence aims to represent domain
entities, such as Book and Author, as plain objects
using the used programming language
representational capabilities and syntax

– these objects can then be persisted behind the scenes
to a database or other data source

49

Object Persistence and ORMs

• Language-integrated query technologies apply similar
ideas

• Object persistence APIs go a step further, as they also
describe the full business domain (i.e., the definition of
data entities) within the host language

– to allow for efficient querying of objects, such entities are
frequently mapped to a relational database model using a so-
called Object Relational Mapper (ORM)

– not strictly necessary to utilize an ORM to enable object
persistence, though most APIs tightly couple both concepts

50

Object Persistence with EJB

• Java’s ecosystem was an early adopter of object
persistence, built on top of Enterprise JavaBeans
(EJB)

• A Java Bean is Java’s term to refer to reusable OO
software components.

• Enterprise JavaBeans are ‘business’ components
that run within the Java Enterprise Edition (EE)
platform

51

Object Persistence with EJB

52

Object Persistence with EJB

• Enterprise JavaBeans expand the concept of Java Beans,
which encapsulate a piece of re-usable, modular logic

• Beans are essentially nothing more than a normal Java
class definition, following some additional rules

• Once a Java Bean is defined, outside frameworks know
how to access and modify its properties

• The Enterprise JavaBeans (EJB) standard extends the
concept of Java Beans with the goal of utilizing these
components in a server environment

53

Object Persistence with EJB

public class BookBean implements java.io.Serializable
{

private String title = null;

private int numPages = 0;

private boolean inStock = false;

/* Default constructor without arguments */

public BookBean() {

}

/* Getters and setters */

public String getTitle() {

return title;

}

public void setTitle(String value) {

this.title = value;

}

54

public boolean isInStock() {

return inStock;

}

public void setInStock(boolean value) {

this.inStock = value;

}

public int getNumPages() {

return numPages;

}

public void setNumPages(int value) {

this.numPages = value;

}

}

Object Persistence with EJB

• Initial versions of EJB discriminate between 3
types of enterprise Beans:
– Session Beans are Beans that perform a task for a

client. They represent a transient object which handles
part of the business logic of an application.

– A message-driven Bean allows Java EE applications to
process messages in an asynchronous manner

– Entity beans are persistent. These Beans represent the
OO incarnation of business entities, such as a Book, a
Customer, ….

55

Object Persistence with EJB

• Entity beans can be made persistent using 2
approaches:

– Bean-Managed Persistence (BMP) leaves the
implementation of the persistence code up to the
programmer, meaning that the Bean implementation
will contain code to persist its state into, e.g., an RDBMS

– Container-Managed Persistence (CMP) delegates this
responsibility to the EJB container which will generate all
necessary database calls behind the scenes to retrieve
and persist objects

56

Object Persistence with EJB
public abstract BookBean implements javax.ejb.EntityBean {

// instance fields (by default, these will not be persisted)

EntityContext ejbContext;

String thisWillNotBePersisted;

// container-managed persistent fields are defined as abstract getters and setters

public abstract void setTitle(String value);

public abstract String getTitle();

public abstract void setNumPages(int value);

public abstract int getNumPages();

// container-managed relationships

public abstract void setAuthor(Author value);

public abstract Author getAuthor();

}

57

Object Persistence with JPA

• EJB 3.0 introduces a radical change, inspired by
application frameworks such as Spring

• The Java Persistence API forms the replacement for the
entity Beans in EJB 3.0, which were removed from this
version of the standard

• JPA is just a specification defining a set of interfaces and
annotations, and requires an implementation

• Most of the persistence vendors have released
implementations of JPA, including Hibernate (Red Hat),
TopLink (Oracle), Kodo JDO (Oracle), Cocobase and JPOX.

58

Object Persistence with JPA

59

Annotation Description

@Entity Declares a persistent POJO class.

@Table Allows to explicitly specify the name of the relational table to map

the persistent POJO class to.

@Column Allows to explicitly specify the name of the relational table column.

@ID Maps a persistent POJO class field to a primary key of a relational

table.

@Transient Allows to define POJO class fields that are transient and should not

be made persistent.

Object Persistence with JPA
import java.util.List;

import javax.persistence.*;

@Entity // Book is an entity mapped to a table

@Table

public class Book {

@Id // Use id as the primary key

// Generate id values automatically:

@GeneratedValue(strategy = GenerationType.AUTO)

private int id;

private String title;

// Define a many-to-many relation

@ManyToMany(cascade = {CascadeType.ALL})

private List<Author> authors;

public Book(String title) {

setTitle(title);

}

public String getTitle() {

return title;

}

public void setTitle(String title) {

this.title = title;

}

public List<Author> getAuthors() {

return authors;

}

public void setAuthors(List<Author> authors) {

this.authors = authors;

}

public String toString() {

String r = "Book [id="+id+", title="+title+"]";

for (Author a : getAuthors()) {

r += "\nBy author: "+a.toString();

}

return r;

}

}

60

Object Persistence with JPA
import java.util.List;

import javax.persistence.*;

@Entity

@Table

public class Author {

@Id

@GeneratedValue(strategy = GenerationType.AUTO)

private int id;

private String name;

// Many-to-many relation in the other direction

@ManyToMany(cascade = {CascadeType.ALL})

private List<Book> books;

public Author(String name) {

setName(name);

}

public String getName() {

return name;

}
61

public void setName(String name) {

this.name = name;

}

public List<Book> getBooks() {

return books;

}

public void setBooks(List<Book> books)
{

this.books = books;

}

public String toString() {

return "Author [id=" + id +
", name=" + name + "]";

}

}

Object Persistence with JPA

• Persistence.xml

<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"

version="2.0" xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name="app">

<!-- We have the following persistable classes: -->

<class>Book</class>

<class>Author</class>

<!-- Settings to connect to the database -->

<properties>

<property name="hibernate.archive.autodetection" value="class" />

<property name="hibernate.connection.driver_class"

value="org.apache.derby.jdbc.EmbeddedDriver" />

<property name="hibernate.connection.url"

value="jdbc:derby:memory:myDB;create=true" />

<property name="hibernate.show_sql" value="true" />

<property name="hibernate.flushMode" value="FLUSH_AUTO" />

<property name="hibernate.hbm2ddl.auto" value="create" />

</properties>

</persistence-unit></persistence> 62

Object Persistence with JPA
import java.util.ArrayList;

import javax.persistence.*;

public class Test {

public static void main(String[] args) {

EntityManagerFactory emfactory =

Persistence.createEntityManagerFactory("app");

EntityManager entitymanager = emfactory.createEntityManager();

entitymanager.getTransaction().begin();

final Author author1 = new Author("Seppe vanden Broucke");

final Author author2 = new Author("Wilfried Lemahieu");

final Author author3 = new Author("Bart Baesens");

final Book book = new Book("My first book");

book.setAuthors(new ArrayList<Author>(){{

this.add(author1);

this.add(author2); }});

63

Object Persistence with JPA

// Persist the book object, the first two authors will be

// persisted as well as they are linked to the book

entitymanager.persist(book);

entitymanager.getTransaction().commit();

System.out.println(book);

// Now persist author3 as well

entitymanager.persist(author3);

entitymanager.close();

emfactory.close();

}

}

64

Object Persistence with JPA
Hibernate: create table Author (id integer not null, name varchar(255), primary key (id))

Hibernate: create table Author_Book (Author_id integer not null, books_id integer not null)

Hibernate: create table Book (id integer not null, title varchar(255), primary key (id))

Hibernate: create table Book_Author (Book_id integer not null, authors_id integer not null)

Hibernate: alter table Author_Book add constraint FK3wjtcus6sftdj8dfvthui6335 foreign key (books_id)
references Book

Hibernate: alter table Author_Book add constraint FKo3f90h3ibr9jtq0u93mjgi5qd foreign key (Author_id)
references Author

Hibernate: alter table Book_Author add constraint FKt42qaxhbq87yfijncjfrs5ukc foreign key (authors_id)
references Author

Hibernate: alter table Book_Author add constraint FKsbb54ii8mmfvh6h2lr0vf2r7f foreign key (Book_id)
references Book

Hibernate: values next value for hibernate_sequence

Hibernate: values next value for hibernate_sequence

Hibernate: insert into Book (title, id) values (?, ?)

Hibernate: insert into Author (name, id) values (?, ?)

Hibernate: insert into Book_Author (Book_id, authors_id) values (?, ?)

Book [id=1, title=My first book]

By author: Author [id=0, name=Seppe vanden Broucke]

Author [id=1, name=Wilfried Lemahieu]

Hibernate: values next value for hibernate_sequence

Author [id=2, name=Bart Baesens]

Hibernate: insert into Author (name, id) values (?, ?) 65

Object Persistence with JPA

• EntityManager.find method is used to look up
entities by the entity’s primary key:
entitymanager.find(Author.class, 2)

• The EntityManager.createQuery method can be
used to query the datastore using Java Persistence
query language queries:
entitymanager.createQuery(

"SELECT c FROM Author c WHERE c.name LIKE :authName")

.setParameter("authName", "%vanden%")

.setMaxResults(10)

.getResultList()

66

Object Persistence with JPA

• JPA comes with its own query language (JPQL) which
closely resembles SQL, including support for SELECT,
UPDATE and DELETE statements

• Why JPQL? The reason has to do with portability

– Contrary to earlier approaches and universal APIs, where it was –
in theory – easy to migrate an application to a different DBMS,
differences in SQL support might still cause a client application to
fail in new DBMS environments

– JPQL tries to prevent this by inserting itself as a more pure,
vendor-agnostic SQL, and will translate JPQL queries to
appropriate SQL statements

– Also still possible to use raw SQL statements
67

Object Persistence with JDO

• Just as JPA, the Java Database Objects (JDO) API also
arose from the failed adoption of the ODMG standard and
the desire to “break out” object persistence capabilities
from EJB

• Unlike JPA, which is primarily targeted towards relational
DBMS data stores, JDO is agnostic to the technology of
the data store used

• Like JPA, JDO comes with a query language called JDOQL
or Java

68

Object Persistence with JDO

Properties props = new Properties();

props.setProperty("javax.jdo.PersistenceManagerFactoryClass", " com.objectdb.jdo.PMF");

props.setProperty("javax.jdo.option.ConnectionURL", "objectdb://localhost/employee.odb");

props.setProperty("javax.jdo.option.ConnectionUserName", "root");

props.setProperty("javax.jdo.option.ConnectionPassword", "mypassword123");

PersistenceManagerFactory pmf = JDOHelper.getPersistenceManagerFactory(props);

PersistenceManager pm = pmf.getPersistenceManager();

69

Object Persistence with JDO
import java.util.Date;

import java.time.*;

import javax.jdo.annotations.IdGeneratorStrategy;

import javax.jdo.annotations.PersistenceCapable;

import javax.jdo.annotations.Persistent;

import javax.jdo.annotations.PrimaryKey;

@PersistenceCapable

public class Employee {

@PrimaryKey

@Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)

private long key;

@Persistent

private String firstName;

@Persistent

private String lastName;

@Persistent

private Date birthDate;

private int age; // This attribute will not be persisted

70

Object Persistence with JDO
public Employee(String firstName, String lastName, Date birthDate) {

this.firstName = firstName;

this.lastName = lastName;

setBirthDate(birthDate);

}

public Key getKey() {

return key;

}

public String getFirstName() {

return firstName;

}

public void setFirstName(String firstName) {

this.firstName = firstName;

}

public String getLastName() {

return lastName;

}

71

Object Persistence with JDO

public void setLastName(String lastName) {

this.lastName = lastName;

}

public Date getBirthDate() {

return birthDate;

}

public void setBirthDate(Date birthDate) {

this.birthDate = birthDate;

LocalDate today = LocalDate.now();

LocalDate birthday = birthDate.toInstant().atZone(ZoneId.systemDefault()).toLocalDate();

Period p = Period.between(birthday, today);

this.age = p.getYears();

}

public int getAge() {

return age;

}

}

72

Object Persistence with JDO

Transaction tx = pm.currentTransaction();

try {

tx.begin();

Employee myEmp = new Employee("Bart","Baesens", new Date(1975, 2, 27));

pm.makePersistent(myEmp);

tx.commit();

} catch (Exception e) {

} finally {

if (tx.isActive()) {

tx.rollback();

}

pm.close();

}

73

Object Persistence with JDO

• Java Data Objects Query Language (JDOQL) supports
2 types of queries

• Declarative query
Query q = pm.newQuery(Employee.class, "lastName ==
last_name");

q.declareParameters("string last_name");

List results = (List) q.execute("Smith");

• Single-string query
Query q = pm.newQuery(

"SELECT FROM Employee WHERE lastName == last_name" +
" PARAMETERS string last_name");

List results = (List) q.execute("Smith");
74

Object Persistence: Others

• Java is not the only programming language whose
ecosystem offers object persistence APIs using
ORM

– The Ruby on Rails ecosystem makes use of the
ActiveRecord library

– The .NET framework comes with the Entity Framework
(EF)

– Python also comes with many libraries such as
SQLAlchemy

75

Database API Summary

76

Technology Embedded or

Call-level

Early or late binding Objects in host

programming

language represent

Data sources Other

ODBC Call-level Late binding, though

prepared SQL

statements possible

as well as calling

stored procedures

A resultset with

rows of fields

Mainly

relational

databases,

though other

structured

tabular sources

possible as well

Microsoft-based

technology, not

object-oriented,

mostly outdated

Database API Summary

77

Technology Embedded or

Call-level

Early or late binding Objects in host

programming

language represent

Data sources Other

JDBC Call-level Late binding, though

prepared SQL

statements possible

as well as calling

stored procedures

A resultset with

rows of fields

Mainly

relational

databases,

though other

structured

tabular sources

possible as well

Java-based

technology, portable,

still in wide use

Database API Summary

78

Technology Embedded or

Call-level

Early or late binding Objects in host

programming

language represent

Data sources Other

SQLJ Embedded Early binding A resultset with

rows of fields

Relational

databases

supporting SQL

Java-based

technology, uses a

precompiler, mostly

outdated

Database API Summary

79

Technology Embedded or

Call-level

Early or late binding Objects in host

programming

language represent

Data sources Other

Language-

integrated

Query

Technologies

Uses an

underlying

call-level API

Uses an underlying

late-binding API

A resultset with

rows of fields,

sometimes

converted to a plain

collection of objects

representing

entities

Relational

databases

supporting SQL

or other data

sources

Examples: jOOQ and

LINQ, works together

with another API to

convert expressions

to SQL

Database API Summary

80

Technology Embedded or

Call-level

Early or late binding Objects in host

programming

language represent

Data sources Other

OLE DB and

ADO

Call-level Late binding, though

prepared SQL

statements possible

as well as calling

stored procedures

A resultset with

rows of fields

Mainly

relational

databases,

though other

structured

tabular sources

possible as well

Microsoft-based

technology,

backwards

compatible with

ODBC, mostly

outdated

Database API Summary

81

Technology Embedded or

Call-level

Early or late binding Objects in host

programming

language represent

Data sources Other

ADO.NET Call-level Late binding, though

prepared SQL statements

possible as well as calling

stored procedures

A resultset with rows

of fields provided by a

DataReader, or a

DataSet: a collection of

tables, rows, and fields,

retrieved and stored by

DataAdapters

Various data

sources

Microsoft-based

technology, backwards

compatible with ODBC

and OLE DB

Database API Summary

82

Technology Embedded or

Call-level

Early or late binding Objects in host

programming

language represent

Data sources Other

Enterprise

JavaBeans (EJB

2.0)

Uses an

underlying

call-level API

Uses an underlying

late-binding API

Plain Java entity

Beans as the main

representation

Mainly

relational

databases,

though other

structured

tabular sources

possible as well

Java-based

technology, works

together with

another API to

convert expressions

to SQL

Database API Summary

83

Technology Embedded or

Call-level

Early or late binding Objects in host

programming

language represent

Data sources Other

Java Persistence

API (JDA in EJB

3.0)

Uses an

underlying

call-level API

Uses an underlying

late-binding API

Plain Java objects as

the main

representation

Mainly

relational

databases,

though other

structured

tabular sources

possible as well

Java-based

technology, works

together with

another API to

convert expressions

to SQL

Database API Summary

84

Technology Embedded or

Call-level

Early or late binding Objects in host

programming

language represent

Data sources Other

Java Database

Objects (JDO)

Uses an

underlying

call-level API

Uses an underlying

late-binding API

Plain Java objects as

the main

representation

Various data

sources

Java-based

technology

Database API Summary

85

Technology Embedded or

Call-level

Early or late binding Objects in host

programming

language represent

Data sources Other

ORM APIs

(ActiveRecord,

Entity

Framework, SQL

Alchemy)

Uses an

underlying

call-level API

Uses an underlying

late-binding API

Plain objects

defined in the

programming

language as the

main

representation

Relational

databases

Various

implementations

available for each

programming

language

Database Access in the World Wide Web

• A web browser will send HTTP requests to a web server, which will
reply with the content corresponding with the URL requested

• Content is oftentimes formatted using HTML, though other content
types can be requested as well, such as XML, JSON, YAML, plain
text, or even multi-media formats

86

Database Access in the World Wide Web

• Main goal of HTTP web browser-server setup was to
retrieve and display static documents

• Quickly became clear that there was a need to access
dynamic documents and visualize them in a web browser

– web server constructs HTML document “on-the-fly” based on a
database query (e.g., /books/databases)

• Common Gateway Interface (CGI) was proposed as one of
the first technologies to construct dynamic pages.

– when a client requests a URL, a program is started on the web
server that is responsible to generate the content (e.g., a HTML)
page which is sent to the client

87

Database Access in the World Wide Web

• CGI allows for a basic form of interactivity, by means of
HTML-forms

• Since CGI programs can be written in virtually any
language, interpreted and easy-to-use languages such as
Perl quickly became popular to implement CGI programs

• Popularity of CGI and dynamic web pages led to the
creation of PHP

– “PHP Hypertext Preprocessor” was meant to be used as a web-
focused CGI “glue” language, as it made a series of common
tasks very easy

88

Database Access in the World Wide Web

89

Database Access in the World Wide Web

• Basic idea behind CGI still forms the basis for interactivity
and dynamic documents found on the web today, though
the actual implementation has changed and is now more
flexible and efficient

• In the original CGI implementation, every request from a
client would lead to a new process being spawned, which
negatively impacts scalability and system resources

90

Database Access in the World Wide Web

• Newer CGI-derived technologies have been proposed, as well as
web servers which can deliver dynamic web pages, without having
to resort to external programs
– JSP (Java Server Pages), ASP (Active Server Pages) and ASP.NET

• In many cases, the web server then actually becomes the
“application server”, as the web server is now the central entity
handling business logic and business entity management, with
HTTP as the main language

• Client will be a web browser in most cases, though HTTP is also
rapidly replacing older remoting protocols (e.g., RMI, CORBA,
DCOM) to become the lingua franca of the web

91

Database Access in the World Wide Web

92

Database Access in the World Wide Web

• HTTP and HTML are limited regarding the interfaces that can be
shown

• Need for more dynamic, interactive elements in the browser
quickly arose, which led to client-side scripting languages such as
JavaScript, VBScript, and Jscript
– scripts are embedded inside HTML pages, interpreted and ran by the browser

• Adoption of client-side scripting languages was hampered by the
different languages, which all received different levels of support
– functionality still bound to the markup and lay-out capabilities of HTML

• Another type of client-side programs appeared, which inject
themselves into the browser and take over complete functionality
– E.g., Java’s Applet technology, Microsoft’s ActiveX controls, Windows Forms

and Adobe’s Flash

93

Database Access in the World Wide Web

• Client-side plugins (e.g., Applets, Flash, ActiveX) have
mostly been pushed aside

– require installation of a separate plugin

– security issues

– don’t work well on mobile platforms

• Standards such as HTML and CSS, together with
JavaScript, have evolved to the point where all major
browser vendors support a solid, common stack, causing
JavaScript to re-arise as the most popular choice

94

Database Access in the World Wide Web

• Re-adoption of JavaScript thanks to rising usage of AJAX

• AJAX (Asynchronous JavaScript and XML)

– started as ActiveX component (Microsoft)

– implemented by vendors as “XMLHttpRequest” JavaScript object
• created to perform asynchronous calls to URLs with the expectation to

receive back XML-formatted data

– first used by Gmail in 2004 and Google Maps in 2005

– popular thanks to JavaScript libraries

– combined with HTML and CSS has allowed for the development
of true web applications which work, look and feel just as well as
native applications

95

Database Access in the World Wide Web

96

Database Access in the World Wide Web

• Rising popularity of JavaScript and web-based APIs and
protocols have caused many database vendors to start
incorporating standard web service related technologies

– REST (REpresentational State Transfer)

– SOAP (Simple Object Access Protocol)

• REST has become especially popular in recent NoSQL
databases, as it offers a simple querying interface on top
of the standard HTTP protocol

• SOAP is more heavy-weight and relies on the XML
language

97

Database Access in the World Wide Web

98

Database Access in the World Wide Web

• Example: JavaScript fragment embedded inside a
web application can perform a synchronous HTTP
call to the following endpoint (e.g., using Oracle’s
NoSQL data services):

http://database_server:8080/book_database/books/

99

Database Access in the World Wide Web
HTTP/1.1 200 OK

Content-Type: application/json

Transfer-Encoding: chunked

{

"items":[

{"id":7369,"title":"Book One"}, {"id":7499,"title":"My Second Book"},
{"id":7521,"title":"Third Book"}

],

"hasMore":true, "limit":3, "offset":0, "count":3,

"links":[

{"rel":"self",
"href":" http://database_server:8080/book_database/books/"},

{"rel":"describedby",
"href":"http://database_server:8080/metadata-catalog/book_database/books/"},

{"rel":"first",
"href":"http://database_server:8080/book_database/books/"},

{"rel":"next",
"href":"http://database_server:8080/book_database/books/?offset=3"}

]

}
100

Database Access in the World Wide Web

• REST web services can expose basic querying capabilities,
also supporting filtering e.g. by means of URL parameters

http://database_server:8080/book_database/books/?filter={'id':{'gt':7400}}

• Some DBMSs also support SQL queries on the server side,
which can then be called using a REST call, similar to
stored procedures

http://database_server:8080/book_database/query/my_stored_query?param1=100

101

Database Access in the World Wide Web

• Many of the REST functionalities were already
implemented in other universal APIs such as JDBC or
ADO.NET

• The key selling point of REST is its relative simplicity, which
allows it to be called directly from a web browser

• Rising popularity of web-based applications and NoSQL
databases, is causing DBMS vendors to adapt their
products

102

Conclusion

• Database System Architectures

• Database APIs

• Object Persistence and Object Relational Mappers

• Database Access in the World Wide Web

• Conclusion

103

More information?

www.pdbmbook.com 104

http://www.pdbmbook.com/

