
NoSQL Databases

www.pdbmbook.com

http://www.pdbmbook.com/

Introduction

• The NoSQL movement

• Key-Value stores

• Tuple and Document stores

• Column-oriented databases

• Graph based databases

• Other NoSQL categories

2

The NoSQL movement

• RDBMSs put a lot of emphasis on keeping data consistent.

– Entire database is consistent at all times (ACID)

• Focus on consistency may hamper flexibility and scalability

• As the data volumes or number of parallel transactions
increase, capacity can be increased by

– Vertical scaling: extending storage capacity and/or CPU power of
the database server

– Horizontal scaling: multiple DBMS servers being arranged in a
cluster

3

The NoSQL movement

• RDBMSs are not good at extensive horizontal
scaling
– Coordination overhead because of focus on consistency

– Rigid database schemas

• Other types of DBMSs needed for situations with
massive volumes, flexible data structures and
where scalability and availability are more
important  NoSQL databases

4

The NoSQL movement
• NoSQL databases

– Describes databases that store and manipulate data in other
formats than tabular relations, i.e. non-relational databases
(NoREL)

• NoSQL databases aim at near linear horizontal
scalability, by distributing data over a cluster of
database nodes for the sake of performance as well
as availability

• Eventual consistency: the data (and its replicas) will
become consistent at some point in time after each
transaction

5

The NoSQL movement

6

Relational Databases NoSQL Databases
Data paradigm Relational tables Key-value (tuple) based

Document based
Column based
Graph based
XML, object based
Others: time series, probabilistic, etc.

Distribution Single-node and distributed Mainly distributed
Scalability Vertical scaling, harder to scale

horizontally
Easy to scale horizontally, easy data
replication

Openness Closed and open source Mainly open source
Schema role Schema-driven Mainly schema-free or flexible schema
Query language SQL as query language No or simple querying facilities, or

special-purpose languages
Transaction
mechanism

ACID: Atomicity, Consistency, Isolation,
Durability

BASE: Basically available, Soft state,
Eventual consistency

Feature set Many features (triggers, views, stored
procedures, etc.)

Simple API

Data volume Capable of handling normal-sized data
sets

Capable of handling huge amounts of
data and/or very high frequencies of
read/write requests

Key-value Stores

• Key-value based database stores data as
(key, value) pairs

– Keys are unique

– Hash map, or hash table or dictionary

7

Key-value Stores
import java.util.HashMap;

import java.util.Map;

public class KeyValueStoreExample {

public static void main(String... args) {

// Keep track of age based on name

Map<String, Integer> age_by_name = new HashMap<>();

// Store some entries

age_by_name.put("wilfried", 34);

age_by_name.put("seppe", 30);

age_by_name.put("bart", 46);

age_by_name.put("jeanne", 19);

// Get an entry

int age_of_wilfried = age_by_name.get("wilfried");

System.out.println("Wilfried's age: " + age_of_wilfried);

// Keys are unique

age_by_name.put("seppe", 50); // Overrides previous entry

}

} 8

Key-value Stores

• Keys (e.g., “bart”, “seppe”) are hashed by means of a so-
called hash function

– A hash function takes an arbitrary value of arbitrary size and
maps it to a key with a fixed size, which is called the hash value.

– Each hash can be mapped to a space in computer memory

9

Key-value Stores

• NoSQL databases are built with horizontal
scalability support in mind

• Distribute hash table over different locations

• Assume we need to spread our hashes over three
servers

– Hash every key (“wilfried”, “seppe”) to a server
identifier

– index(hash) = mod(hash, nrServers) + 1

10

Key-value Stores

11

Sharding!

Key-value Stores

• Example: Memcached

– Implements a distributed memory-driven hash table
(i.e. a key-value store), which is put in front of a
traditional database to speed up queries by caching
recently accessed objects in RAM

– Caching solution

12

Key-value Stores

import java.util.ArrayList;

import java.util.List;

import net.spy.memcached.AddrUtil;

import net.spy.memcached.MemcachedClient;

public class MemCachedExample {

public static void main(String[] args) throws Exception {

List<String> serverList = new ArrayList<String>() {

{

this.add("memcachedserver1.servers:11211");

this.add("memcachedserver2.servers:11211");

this.add("memcachedserver3.servers:11211");

}

};

13

Key-value Stores
MemcachedClient memcachedClient = new MemcachedClient(

AddrUtil.getAddresses(serverList));

// ADD adds an entry and does nothing if the key already exists

// Think of it as an INSERT

// The second parameter (0) indicates the expiration - 0 means no expiry

memcachedClient.add("marc", 0, 34);

memcachedClient.add("seppe", 0, 32);

memcachedClient.add("bart", 0, 66);

memcachedClient.add("jeanne", 0, 19);

// SET sets an entry regardless of whether it exists

// Think of it as an UPDATE-OR-INSERT

memcachedClient.add("marc", 0, 1111); // <- ADD will have no effect

memcachedClient.set("jeanne", 0, 12); // <- But SET will

14

Key-value Stores
// REPLACE replaces an entry and does nothing if the key does not exist

// Think of it as an UPDATE

memcachedClient.replace("not_existing_name", 0, 12); // <- Will have no effect

memcachedClient.replace("jeanne", 0, 10);

// DELETE deletes an entry, similar to an SQL DELETE statement

memcachedClient.delete("seppe");

// GET retrieves an entry

Integer age_of_marc = (Integer) memcachedClient.get("marc");

Integer age_of_short_lived = (Integer) memcachedClient.get("short_lived_name");

Integer age_of_not_existing = (Integer) memcachedClient.get("not_existing_name");

Integer age_of_seppe = (Integer) memcachedClient.get("seppe");

System.out.println("Age of Marc: " + age_of_marc);

System.out.println("Age of Seppe (deleted): " + age_of_seppe);

System.out.println("Age of not existing name: " + age_of_not_existing);

System.out.println("Age of short lived name (expired): " + age_of_short_lived);

memcachedClient.shutdown();

}

}

15

Key Value Stores

• Request Coordination

• Consistent Hashing

• Replication and Redundancy

• Eventual Consistency

• Stabilization

• Integrity Constraints and Querying

16

Request Coordination

• In many NoSQL implementations (e.g. Cassandra,
Google’s BigTable, Amazon’s DynamoDB) all nodes
implement the same functionality and are all able
to perform the role of request coordinator

• Need for membership protocol

–Dissemination

• Based on periodic, pairwise communication

– Failure detection

17

Consistent Hashing

• Consistent hashing schemes are often used, which
avoid having to remap each key to a new node
when nodes are added or removed

• Suppose we have a situation where 10 keys are
distributed over 3 servers (n = 3) with the
following hash function

– h(key) = key modulo n

18

Consistent Hashing

19

n

key 3 2 4

0 0 0 0

1 1 1 1

2 2 0 2

3 0 1 3

4 1 0 0

5 2 1 1

6 0 0 2

7 1 1 3

8 2 0 0

9 0 1 1

Consistent Hashing
• At the core of a consistent hashing setup is a so

called “ring”-topology, which is basically a
representation of the number range [0,1[:

20

Consistent Hashing

21

Consistent Hashing

• Hash each key to a position on the ring, and store the actual key-
value pair on the first server that appears clockwise of the hashed
point on the ring

22

Consistent Hashing

• Because of the uniformity property of a “good”
hash function, roughly 1/n of key-value pairs will
end up being stored on each server

• Most of the key-value pairs will remain unaffected
in case a machine is added or removed

23

Consistent Hashing

24

Replication and Redundancy
• Problems with consistent hashing:

– If 2 servers end up being mapped close to one another, one of these nodes will
end up with few keys to store

– In case a server is added, all of the keys moved to this new node originate from
just one other server

• Instead of mapping a server s to a single point on our ring, we map it
multiple positions, called replicas

• For each physical server s, we hence end up with r (the number of
replicas) points on the ring

• Note: each of the replicas still represents the same physical instance
(↔ redundancy)
– Virtual nodes

25

Replication and Redundancy

• To handle data replication or redundancy, many
vendors extend the consistent hashing mechanism
so that key-value pairs are duplicated across
multiple nodes

– E.g., by storing the key-value pair on two or more
nodes clockwise from the key’s position on the ring

26

Replication and Redundancy

• It is also possible to set up a full redundancy scheme where each
node itself corresponds to multiple physical machines each storing
a fully redundant copy of the data

27

Eventual Consistency

• Membership protocol does not guarantee that
every node is aware of every other node at all
times

– It will reach a consistent state over time

• State of the network might not be perfectly
consistent at any moment in time, though will
become eventually consistent at a future point in
time

• Many NoSQL databases guarantee so called
eventual consistency

28

Eventual Consistency

• Most NoSQL databases follow the BASE principle

– Basically available, Soft state, Eventual consistency

• CAP theorem states that a distributed computer system
cannot guarantee the following three properties at the
same time:

– Consistency (all nodes see the same data at the same time)

– Availability (guarantees that every request receives a response
indicating a success or failure result)

– Partition tolerance (the system continues to work even if nodes go

down or are added).

29

Eventual Consistency

• Most NoSQL databases sacrifice the consistency part
of CAP in their setup, instead striving for eventual
consistency

• The full BASE acronym stands for:

– Basically available: NoSQL databases adhere to the
availability guarantee of the CAP theorem

– Soft state: the system can change over time, even
without receiving input

– Eventual consistency: the system will become consistent
over time

30

Stabilization

• The operation which repartitions hashes over
nodes in case nodes or added or removed is called
stabilization

• If a consistent hashing scheme being applied, the
number of fluctuations in the hash-node mappings
will be minimized.

31

Integrity Constraints and Querying

• Key value stores represent a very diverse gamut of
systems

• Full blown DBMSs versus caches

• Only limited query facilities are offered

– E.g. put and set

• Limited to no means to enforce structural
constraints

– DBMS remains agnostic to the internal structure

• No relationships, referential integrity constraints
or database schema, can be defined 32

Tuple and Document Stores

• A tuple store is similar to a key-value store, with the
difference that it does not store pairwise
combinations of a key and a value, but instead stores
a unique key together with a vector of data

• Example:
– marc -> ("Marc", "McLast Name", 25, "Germany")

• No requirement to have the same length or semantic
ordering (schema-less!)

33

Tuple and Document Stores

• Various NoSQL implementations do, however, permit
organizing entries in semantical groups, (aka
collections or tables)

• Examples:
– Person:marc -> ("Marc", "McLast Name", 25, "Germany")

– Person:harry -> ("Harry", "Smith", 29, "Belgium")

34

Tuple and Document Stores

• Document stores store a collection of attributes
that are labeled and unordered, representing
items that are semi-structured

• Example:
{

Title = "Harry Potter"

ISBN = "111-1111111111"

Authors = ["J.K. Rowling"]

Price = 32

Dimensions = "8.5 x 11.0 x 0.5"

PageCount = 234

Genre = "Fantasy"

}
35

Tuple and Document Stores

• Most modern NoSQL databases choose to
represent documents using JSON

{

"title": "Harry Potter",

"authors": ["J.K. Rowling", "R.J. Kowling"],

"price": 32.00,

"genres": ["fantasy"],

"dimensions": {

"width": 8.5,

"height": 11.0,

"depth": 0.5

},

"pages": 234,

"in_publication": true,

"subtitle": null

}

36

Tuple and Document Stores

• Items with Keys

• Filters and Queries

• Complex Queries and Aggregation with
MapReduce

• SQL After all …

37

Items with Keys

• Most NoSQL document stores will allow you to
store items in tables (collections) in a schema-less
manner, but will enforce that a primary key be
specified

– E.g. Amazon’s DynamoDB, MongoDB (_id)

• Primary key will be used as a partitioning key to
create a hash and determine where the data will
be stored

38

Filters and Queries
import org.bson.Document;

import com.mongodb.MongoClient;

import com.mongodb.client.FindIterable;

import com.mongodb.client.MongoDatabase;

import java.util.ArrayList;

import static com.mongodb.client.model.Filters.*;

import static java.util.Arrays.asList;

public class MongoDBExample {

public static void main(String... args) {

MongoClient mongoClient = new MongoClient();

MongoDatabase db = mongoClient.getDatabase("test");

// Delete all books first

db.getCollection("books").deleteMany(new Document());

// Add some books

db.getCollection("books").insertMany(new ArrayList<Document>() {{

add(getBookDocument("My First Book", "Wilfried", "Lemahieu", 12, new String[]{"drama"}));

add(getBookDocument("My Second Book", "Seppe", “vanden Broucke", 437, new String[]{"fantasy", "thriller"}));

add(getBookDocument("My Third Book", "Seppe", “vanden Broucke", 200, new String[]{"educational"}));

add(getBookDocument("Java Programming", "Bart", "Baesens", 100, new String[]{"educational"}));

}});

39

Filters and Queries
// Perform query

FindIterable<Document> result = db.getCollection("books").find(

and(eq("author.last_name", “vanden Broucke"),

eq("genres", "thriller"),

gt("nrPages", 100)));

for (Document r : result) {

System.out.println(r.toString());

// Increase the number of pages:

db.getCollection("books").updateOne(

new Document("_id", r.get("_id")),

new Document("$set",
new Document("nrPages", r.getInteger("nrPages") + 100)));

}

mongoClient.close();}

public static Document getBookDocument(String title,

String authorFirst, String authorLast,

int nrPages, String[] genres) {

return new Document("author", new Document()

.append("first_name", authorFirst)

.append("last_name", authorLast))

.append("title", title)

.append("nrPages", nrPages)

.append("genres", asList(genres));}} 40

Filters and Queries

41

Document{{_id=567ef62bc0c3081f4c04b16c,

author=Document{{first_name=Seppe, last_name=vanden Broucke}},

title=My Second Book, nrPages=437, genres=[fantasy, thriller]}}

Filters and Queries

// Perform aggregation query

AggregateIterable<Document> result = db.getCollection("books")

.aggregate(asList(

new Document("$group",

new Document("_id", "$author.last_name")

.append("page_sum", new Document("$sum",
"$nrPages")))));

for (Document r : result) {

System.out.println(r.toString());

}

42

Document{{_id=Lemahieu, page_sum=12}}

Document{{_id=Vanden Broucke, page_sum=637}}

Document{{_id=Baesens, page_sum=100}}

Filters and Queries

• Queries can still be slow because every filter (such
as “author.last_name = Baesens“) entails a
complete collection or table scan

• Most document stores can define a variety of
indexes

– unique and non-unique indexes

– compound indexes

– geospatial indexes

– text-based indexes
43

Complex Queries and Aggregation with MapReduce

• Document stores do not support relations

• First approach: embedded documents

{

"title": "Databases for Beginners",

"authors": ["J.K. Sequel", "John Smith"],

"pages": 234

}

{

"title": "Databases for Beginners",

"authors": [

{"first_name": "Jay Kay", "last_name": "Sequel", "age": 54},

{"first_name": "John", "last_name": "Smith", "age": 32}
],

"pages": 234

}

44

BUT: Data duplication!

Complex Queries and Aggregation with MapReduce

• Second approach: create two collections

book collection:

{

"title": "Databases for Beginners",

"authors": ["Jay Kay Rowling", "John Smith"],

"pages": 234

}

authors collection:

{

"_id": "Jay Kay Rowling",

"age": 54

}
45

BUT: Need to resolve complex relational

queries in application code!

Complex Queries and Aggregation with MapReduce

• Third Approach: MapReduce
– a map-reduce pipeline starts from a series of key-value pairs

(k1,v1) and maps each pair to one or more output pairs

– the output entries are shuffled and distributed so that all output
entries belonging to the same key are assigned to the same
worker (e.g. physical machines)

– workers then apply a reduce function to each group of key-value
pairs having the same key, producing a new list of values per
output key

– the resulting, final outputs are then (optionally) sorted per key
k2 to produce the final outcome

46

Complex Queries and Aggregation with MapReduce

• Example: get a summed count of pages for books per genre

• Create a list of input keys-value pairs

• Map function is a simple conversion to a genre-nrPages
key-value pair

function map(k1, v1)

emit output record (v1.genre, v1.nrPages)

end function
47

k1 v1
1 {genre: education, nrPages: 120}
2 {genre: thriller, nrPages: 100}
3 {genre: fantasy, nrPages: 20}
… …

Complex Queries and Aggregation with MapReduce

• Workers have produced the following three output lists, with the
keys corresponding to genres

• A working operation will be started per unique key k2, for which its
associated list of values will be reduced
– E.g., (education,[120,200,20]) will be reduced to its sum, 340

function reduce(k2, v2_list)

emit output record (k2, sum(v2_list))

end function
48

Worker 1
k2 v2
education 120
thriller 100
fantasy 20

Worker 2
k2 v2

drama 500
education 200

Worker 3
k2 v2
education 20
fantasy 10

Complex Queries and Aggregation with MapReduce

• Final output looks as

• Can be sorted based on k2 or v3

49

k2 v3
education 340
thriller 100
drama 500
fantasy 30

Complex Queries and Aggregation with MapReduce

• Suppose we would now like to retrieve an average page
count per book for each genre

• Reduce function becomes
function reduce(k2, v2_list)

emit output record (k2, sum(v2_list) / length(v2_list))

end function

• After mapping the input list, workers produce the
following three output lists

50

Worker 1
k2 v2
education 120
thriller 100
fantasy 20

Worker 2
k2 v2
drama 500
education 200

Worker 3
k2 v2
education 20

fantasy 10

Complex Queries and Aggregation with MapReduce

• Average as follows

• Note: reduce-operation can happen more than
once, and can already start before all mapping
operations have finished!

– Need to ensure that results are correct by rewriting
map and reduce functions!

51

k2 v3

education (120 + 200 + 20) / 3 = 113.33

thriller 100 / 1 = 100.00

drama 500 / 1 = 500.00

fantasy (20 + 10) / 2 = 15.00

Complex Queries and Aggregation with MapReduce

function map(k1, v1)

emit output record (v1.genre, (v1.nrPages, 1))

end function

function reduce(k2, v2_list)

for each (nrPages, count) in v2_list do

s = s + nrPages * count

newc = newc + count

repeat

emit output record (k2, (s/newc, newc))

end function

52

Complex Queries and Aggregation with MapReduce

• Example: count the number of occurrences per
word in a document

function map(document_name, document_text)

for each word in document_text do

emit output record (word, 1)

repeat

end function

function reduce(word, partial_counts)

emit output record (word, sum(partial_counts))

end function

53

Complex Queries and Aggregation with MapReduce

• Example: return the average number of pages per
genre, but now taking into account that books can
have more than one genre associated to them (in
MongoDB)

54

Complex Queries and Aggregation with MapReduce
import org.bson.Document;

import com.mongodb.MongoClient;

import com.mongodb.client.MongoDatabase;

import java.util.ArrayList;

import java.util.List;

import java.util.Random;

import static java.util.Arrays.asList;

public class MongoDBAggregationExample {

public static Random r = new Random();

public static void main(String... args) {

MongoClient mongoClient = new MongoClient();

MongoDatabase db = mongoClient.getDatabase("test");

setupDatabase(db);

for (Document r : db.getCollection("books").find())

System.out.println(r);

mongoClient.close();} 55

Complex Queries and Aggregation with MapReduce

public static void setupDatabase(MongoDatabase db) {

db.getCollection("books").deleteMany(new Document());

String[] possibleGenres = new String[] {

"drama", "thriller", "romance", "detective",

"action", "educational", "humor", "fantasy" };

for (int i = 0; i < 100; i++) {

db.getCollection("books").insertOne(

new Document("_id", i)

.append("nrPages", r.nextInt(900) + 100)

.append("genres",
getRandom(asList(possibleGenres), r.nextInt(3) + 1)));

}

}

56

Complex Queries and Aggregation with MapReduce

public static List<String> getRandom(List<String> els, int number) {

List<String> selected = new ArrayList<>();

List<String> remaining = new ArrayList<>(els);

for (int i = 0; i < number; i++) {

int s = r.nextInt(remaining.size());

selected.add(remaining.get(s));

remaining.remove(s);

}

return selected;

}

}

Document{{_id=0, nrPages=188, genres=[action, detective, romance]}}

Document{{_id=1, nrPages=976, genres=[romance, detective, humor]}}

Document{{_id=2, nrPages=652, genres=[thriller, fantasy, action]}}

Document{{_id=3, nrPages=590, genres=[fantasy]}}

Document{{_id=4, nrPages=703, genres=[educational, drama, thriller]}}

Document{{_id=5, nrPages=913, genres=[detective]}}

… 57

Complex Queries and Aggregation with MapReduce

• Manual construction of the aggregation query looks as follows

public static void reportAggregate(MongoDatabase db) {

Map<String, List<Integer>> counts = new HashMap<>();

for (Document r : db.getCollection("books").find()) {

for (Object genre : r.get("genres", List.class)) {

if (!counts.containsKey(genre.toString()))

counts.put(genre.toString(), new ArrayList<Integer>());

counts.get(genre.toString()).add(r.getInteger("nrPages"));

}

}

for (Entry<String, List<Integer>> entry : counts.entrySet()) {

System.out.println(entry.getKey() + " --> AVG = " +

sum(entry.getValue()) / (double) entry.getValue().size());

}

}

private static int sum(List<Integer> value) {

int sum = 0;

for (int i : value) sum += i;

return sum;

} 58

romance --> AVG = 497.39285714285717

drama --> AVG = 536.88

detective --> AVG = 597.1724137931035

humor --> AVG = 603.5357142857143

fantasy --> AVG = 540.0434782608696

educational --> AVG = 536.1739130434783

action --> AVG = 398.9032258064516

thriller --> AVG = 513.5862068965517

Complex Queries and Aggregation with MapReduce

• In case the list of genres is known beforehand, we can optimize by performing the
aggregation per genre directly in MongoDB itself

public static void reportAggregate(MongoDatabase db) {

String[] possibleGenres = new String[] {

"drama", "thriller", "romance", "detective",

"action", "educational", "humor", "fantasy" };

for (String genre : possibleGenres) {

AggregateIterable<Document> iterable =

db.getCollection("books").aggregate(asList(

new Document("$match", new Document("genres", genre)),

new Document("$group", new Document("_id", genre)

.append("average", new Document("$avg", "$nrPages")))));

for (Document r : iterable) {

System.out.println(r);

}

}

}

59

Document{{_id=drama, average=536.88}}

Document{{_id=thriller, average=513.5862068965517}}

Document{{_id=romance, average=497.39285714285717}}

Document{{_id=detective, average=597.1724137931035}}

Document{{_id=action, average=398.9032258064516}}

…

Complex Queries and Aggregation with MapReduce

• Assume now that we have millions of books in our database and we do not know
the number of genres beforehand  use Map Reduce

• Map in MongoDB:

function() {

// No arguments, use “this” to refer to the
// local document item being processed

emit(key, value);

}

• Reduce in MongoDB:

function(key, values) {

return result;

} 60

Complex Queries and Aggregation with MapReduce

• Map function
function() {

var nrPages = this.nrPages;

this.genres.forEach(function(genre) {

emit(genre, {average: nrPages, count: 1});

});

}

• Reduce function
function(genre, values) {

var s = 0;

var newc = 0;

values.forEach(function(curAvg) {

s += curAvg.average * curAvg.count;

newc += curAvg.count;

});

return {average: (s / newc), count: newc};

}
61

Complex Queries and Aggregation with MapReduce

public static void reportAggregate(MongoDatabase db) {

String map = "function() { " +

" var nrPages = this.nrPages; " +

" this.genres.forEach(function(genre) { " +

" emit(genre, {average: nrPages, count: 1}); " +

" }); " +

"} ";

String reduce = "function(genre, values) { " +

" var s = 0; var newc = 0; " +

" values.forEach(function(curAvg) { " +

" s += curAvg.average * curAvg.count; " +

" newc += curAvg.count; " +

" }); " +

" return {average: (s / newc), count: newc}; " +

"} ";

MapReduceIterable<Document> result = db.getCollection("books")

.mapReduce(map, reduce);

for (Document r : result)

System.out.println(r);}
62

Complex Queries and Aggregation with MapReduce

Document{{_id=action, value=Document{{average=398.9032258064516, count=31.0}}}}

Document{{_id=detective, value=Document{{average=597.1724137931035, count=29.0}}}}

Document{{_id=drama, value=Document{{average=536.88, count=25.0}}}}

Document{{_id=educational, value=Document{{average=536.1739130434783, count=23.0}}}}

Document{{_id=fantasy, value=Document{{average=540.0434782608696, count=23.0}}}}

Document{{_id=humor, value=Document{{average=603.5357142857143, count=28.0}}}}

Document{{_id=romance, value=Document{{average=497.39285714285717, count=28.0}}}}

Document{{_id=thriller, value=Document{{average=513.5862068965517, count=29.0}}}}

63

SQL After All

• GROUP BY style SQL queries are convertible to an
equivalent map-reduce pipeline

• Many document store implementations express queries
using an SQL interface

• Couchbase, also allows to define foreign keys and perform
join operations

SELECT books.title, books.genres,
authors.name

FROM books

JOIN authors ON KEYS books.authorId
64

SQL After All

• Many RDBMS vendors start implementing NoSQL
by
– Focusing on horizontal scalability and distributed querying

– Dropping schema requirements

– Support for nested data types or allowing to store JSON directly
in tables

– Support for Map-Reduce operations

– Support for special data types, such as geospatial data

65

Column-oriented Databases

• A column-oriented DBMS is a database
management system that stores data tables as
sections of columns of data

• Useful if

– aggregates are regularly computed over large numbers
of similar data items

– data is sparse, i.e. columns with many null values

• Can also be an RDBMS, key-value or document
store

66

Column-oriented Databases

• Example
Id Genre Title Price Audiobook price

1 fantasy My first book 20 30

2 education Beginners guide 10 null

3 education SQL strikes back 40 null

4 fantasy The rise of SQL 10 null

• Row based databases are not efficient at performing
operations that apply to the entire data set

– Need indexes which add overhead

67

Column-oriented Databases

• In a column-oriented database, all values of a
column are placed together on disk
Genre: fantasy:1,4 education:2,3

Title: My first book:1 Beginners guide:2 SQL strikes back:3 The rise of SQL:4

Price: 20:1 10:2,4 40:3

Audiobook price: 30:1

• A column matches the structure of a normal index in
a row-based system

• Operations such as: find all records with price equal
to 10 can now be executed directly

• Null values do not take up storage space anymore
68

Column-oriented Databases

• Disadvantages

– Retrieving all attributes pertaining to a single entity
becomes less efficient

– Join operations will be slowed down

• Examples

– Google BigTable, Cassandra, HBase, and Parquet

69

Graph based databases

• Graph databases apply graph theory to the
storage of information of records

• Graphs consist of nodes and edges

70

Graph based databases

• One-to-one, one-to-many, and many-to-many structures
can easily be modeled in a graph

• Consider N-M relationship between books and authors

• RDBMS needs 3 tables: Book, Author and Books_Authors

• SQL query to return all book titles for books written by a
particular author would look like follows

SELECT title

FROM books, authors, books_authors

WHERE author.id = books_authors.author_id

AND books.id = books_authors.book_id
AND author.name = "Bart Baesens"

71

Graph based databases

• In a graph database (using Cypher query language from
Neo4j)

MATCH (b:Book)<-[:WRITTEN_BY]-(a:Author)

WHERE a.name = "Bart Baesens"

RETURN b.title

72

Graph based databases

• A graph database is a hyper-relational database,
where JOIN tables are replaced by more
interesting and semantically meaningful
relationships that can be navigated and/or queried
using graph traversal based on graph pattern
matching.

73

Graph based databases

• Cypher Overview (Neo4j)

• Exploring a Social Graph

74

Cypher Overview

• Cypher is a declarative, text-based query language, containing
many similar operations as SQL

• Contains a special MATCH clause to match those patterns using
symbols that look like graph symbols as drawn on a whiteboard

• Nodes are represented by parentheses, representing a circle: ()

• Nodes can be labeled in case they need to be referred to
elsewhere, and be further filtered by their type, using a colon:
(b:Book)

• Edges are drawn using either -- or -->, representing a
unidirectional line or an arrow representing a directional
relationship respectively

75

Cypher Overview

• Relationships can be filtered by putting square
brackets in the middle:
(b:Book)<-[:WRITTEN_BY]-(a:Author)

76

Cypher Overview
MATCH (b:Book)

RETURN b;

MATCH (b:Book)

RETURN b

ORDER BY b.price DESC

LIMIT 20;

MATCH (b:Book)

WHERE b.title = "Beginning Neo4j"

RETURN b;

MATCH (b:Book {title:"Beginning Neo4j"})

RETURN b;

77

Cypher Overview

• JOIN clauses are expressed using direct relational
matching

MATCH (c:Customer)-[p:PURCHASED]->(b:Book)<-
[:WRITTEN_BY]-(a:Author)

WHERE a.name = "Wilfried Lemahieu"

AND c.age > 30

AND p.type = "cash"

RETURN DISTINCT c.name;

78

Cypher Overview

• Graph databases are great at managing tree structures

• Example:
– tree of book genres, and books can be placed under any category level

– a query to fetch a list of all books in the category “Programming” and all its
subcategories

• Cypher can express queries over hierarchies and transitive
relationships of any depth simply by appending a star * after the
relationship type and providing optional min..max limits

MATCH (b:Book)-[:IN_GENRE]->(:Genre)
-[:PARENT*0..]-(:Genre

{name:"Programming"})

RETURN b.title;
79

Exploring a Social Graph

• Example: a social graph for a book reading club,
modeling genres, books and readers

80

Exploring a Social Graph
CREATE (Bart:Reader {name:'Bart Baesens', age:32})

CREATE (Seppe:Reader {name:'Seppe vanden Broucke', age:30})

…

CREATE (Fantasy:Genre {name:'fantasy'})

CREATE (Education:Genre {name:'education'})

…

CREATE (b01:Book {title:'My First Book'})

CREATE (b02:Book {title:'A Thriller Unleashed'})

…

CREATE

(b01)-[:IS_GENRE]->(Education),

(b02)-[:IS_GENRE]->(Thriller),

…

CREATE

(Bart)-[:FRIEND_OF]->(Seppe),

(Bart)-[:FRIEND_OF]->(Wilfried),

…

CREATE

(Bart)-[:LIKES]->(b01), (Bart)-[:LIKES]->(b03),
(Bart)-[:LIKES]->(b05), (Bart)-[:LIKES]->(b06),

… 81

Exploring a Social Graph

82

Exploring a Social Graph

• Who likes romance books?

MATCH (r:Reader)--(:Book)--(:Genre
{name:'romance'})

RETURN r.name

Returns:

Elvis Presley

Mike Smith

Anne HatsAway

Robert Bertoli

… 83

Exploring a Social Graph

• Who are Bart’s friends that liked Humor books?

MATCH (me:Reader)--(friend:Reader)--(b:Book)--(g:Genre)

WHERE g.name = 'humor' AND me.name = 'Bart Baesens'

RETURN DISTINCT friend.name

• Can you recommend some humor books that Seppe’s
friends liked and Seppe has not liked yet?

MATCH (me:Reader)--(friend:Reader),

(friend)--(b:Book),

(b)--(genre:Genre)

WHERE NOT (me)--(b)

AND me.name = 'Seppe vanden Broucke' AND genre.name = 'humor'

RETURN DISTINCT b.title
84

Exploring a Social Graph

• Get a list of people who have liked books Bart
liked, sorted by most liked books in common

MATCH (me:Reader)--(b:Book),

(me)--(friend:Reader)--(b)

WHERE me.name = 'Bart Baesens'

RETURN friend.name, count(*) AS common_likes

ORDER BY common_likes DESC

friend.name common_likes

Wilfried Lemahieu 3

Seppe vanden Broucke 2

Mike Smith 1
85

Graph databases

• Location-based services

• Recommender systems

• Social media (e.g. Twitter and FlockDB)

• Knowledge based systems

86

Other NoSQL Categories

• XML databases

• OO databases

• Database systems to deal with time series and
streaming events

• Database systems to store and query geospatial
data

• Database systems such as BayesDB which let users
query the probable implication of their data

87

Evaluating NoSQL DBMSs

• Most NoSQL implementations have yet to
prove their true worth in the field

• Some queries or aggregations particularly
difficult with Map-Reduce interfaces harder to
learn and use

• Some early-adaptors of NoSQL were
confronted with some sour lessons

– E.g. Twitter and HealthCare.gov

88

Evaluating NoSQL DBMSs

• NoSQL vendors start focusing again on robustness
and durability whereas RDBMS vendors start
implementing features to build schema-free,
scalable data stores

• NewSQL: blend the scalable performance and
flexibility of NoSQL systems with the robustness
guarantees of a traditional RDBMS

89

Evaluating NoSQL DBMSs

90

RDBMSs NoSQL databases NewSQL

Relational Yes No Yes

SQL Yes No Yes

Column stores No Yes Yes

Scalability Limited Yes Yes

Eventually consistent Yes Yes Yes

BASE No Yes No

Big volumes of data No Yes Yes

Schema-less No Yes No

Conclusion

• The NoSQL movement

• Key-Value stores

• Tuple and Document stores

• Column-oriented databases

• Graph based databases

• Other NoSQL categories

91

More information?

www.pdbmbook.com 92

http://www.pdbmbook.com/

