XML Databases

; | ll | E)
JUmMP INT[] 14HE E%{(VINGQIURL

OF:DATA SEMA GEME |

Pnncq bles of Database|Manag ' with the : datab
management information to understand and apply the fundamental con pts of
databdse design'and modeling, database systems; data storage, and thelevolving world
of data warehousing, governance and more. Designed for those studying databiase
management for information management or computer science, this illustrates
textbook has a well-balanced theory—practice focus and covers the essential tapics,
from hnologies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, dnll down boxes that reveal deeper insights on key,
topics, retention questions at the end of every section of a chapter, and connections
boxes that show the relationship between concepts throughout the text are included to
provide the practical tools to get started in database management.

KEY FEATURES INCLUDE:
* Full-color illustrations throughout the text.

= Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.

An online playground with diverse envi including MySQL for querying;
MongoDB; Neodj Cypher; and a tree structure visualization environment.
Hundreds of examples to illustrate and clarify the concepts discussed that can be
reproduced on the book’s companion online playground.

Case studies, review questions, problems and exercises in every chapter.

and ises in the

Additional cases, p

Online Resources
www.cambridge.org/

Instructor’s resources

M Solutions manual
S Code and data for examples

ISBN 978
Cover illustration: @Chen Hanquan / DigitalVision / Getty lmages.
Cover design: Andrew Ward.

9781107

WWW.

186125">

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

v MAHYIAT

SN3S3v8 ONY

I4IN0YE NIANYA

;

PRINCIPLES OF
DATABASE

MANAGEMENT

THE PRACTICAL GUIDE TO STORING. MANAGING
AND ANALYZING BIG AND SMALL DATQ”

ldd

_l AJ‘ J
>‘i,.

L
-
.
rm
w
o
By

INIW3IVNVIN 3SVE

dbmbook.com

http://www.pdbmbook.com/

Introduction

Extensible Markup Language

Processing XML Documents

Storage of XML Documents

Differences between XML and Relational Data

Mappings Between XML Documents and (Object-)
Relational Data

Searching XML Data
XML for Information Exchange
Other Data Representation Formats

Extensible Markup Language

Basic Concepts

Document Type Definitions and XML Schema
Definitions

Extensible Stylesheet Language
Namespaces
XPath

Basic Concepts of XML

* Introduced by the World Wide Web Consortium
(W3C) in 1997

* Simplified subset of the Standard Generalized
Markup Language (SGML),

* Aimed at storing and exchanging complex,
structured documents

e Users can define new tags in XML (€<= HTML)

Basic Concepts of XML

 Combination of a start tag, content and end tag is
called an XML element

e XML is case-sensitive
* Example

<author>

<name>

<first name>Bart</first name>
<last name>Baesens</last name>
</name>

</author>

Basic Concepts of XML

e Start tags can contain attribute values

<author email="Bart.Baesens@kuleuven.be">Bart Baesens</author>

<author>

<name>Bart Baesens</name>

<email use="work">Bart.Baesens@kuleuven.be</email>
<email use="private">Bart.Baesens@gmail.com</email>
</author>

e Comments are defined as follows
<1--This is a comment line -->

* Processing instructions are defined as follows

<?xml version="1.0" encoding="UTF-8"?>

Basic Concepts of XML

* Self-defined XML tags can be used to describe
document structure (¢ HTML)

— can be processed in much more detalil
« XML formatting rules
— only one-root element

— start tag should be closed with a matching end tag
— no overlapping tag sequence or incorrect nesting

Basic Concepts of XML

<?xml version="1.0" encoding="UTF-8"?>
<winecellar>
<wine>
<name>Jacques Selosse Brut Initial</name>
<year>2012</year>
<type>Champagne</type>
<grape percentage="100">Chardonnay</grape>
<price currency="EURO">150</price>
<geo>
<country>France</country>
<region>Champagne</region>
</geo>
<quantity>12</quantity>
</wine>

<name>Meneghetti White</name>
<year>2010</year>
<type>white wine</type>
<grape percentage="80">Chardonnay</grape>
<grape percentage="20">Pinot Blanc</grape>
<price currency="EUR0">18</price>
<geo>
<country>Croatia</country>
<region>Istria</region>
</geo>
<quantity>20</quantity>

</wine>
</winecellar>

Basic Concepts of XML

winecellar
wine
nalme yelar tylpe grape pri[ce g;_o qua;ltity
— country

— region

Document Type Definitions and XML Schema Definitions

Document Type Definitions (DTD) and XML
Schema Definitions (XSD) specify structure of XML
document

Both define tag set, location of each tag, and
nesting

XML document which complies with DTD or XSD is
referred to as valid

XML document which complies with syntax is
referred to as well-formed

Document Type Definitions and XML Schema Definitions

DTD definition for winecellar

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE winecellar [
<!ELEMENT winecellar (wine+)>
<!ELEMENT wine (name, year, type, grape*, price, geo, quantity)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<ELEMENT type (#PCDATA)>
<ELEMENT grape (#PCDATA)>
<IATTLIST grape percentage CDATA #IMPLIED>
. <VELEMENT price (#PCDATA)>
. <IATTLIST price currency CDATA #REQUIRED>
. <!'ELEMENT geo (country, region)>
. <VELEMENT country (#PCDATA)>
. <VELEMENT region (#PCDATA)>
. <VELEMENT quantity (#PCDATA)>

R S

O 00 N O U1 A W IN B

B R R R R R R
O 1 A WN PR O -

Document Type Definitions and XML Schema Definitions

* Disadvantages of DTD

— only supports character data (no support for integers,
dates, complex types)

— not defined using XML syntax

XML Schema supports various data types and
user-defined types

Document Type Definitions and XML Schema Definitions

XML Schema definition for winecellar

1. <?xml version="1.0" encoding="UTF-8" ?>

2. <xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

3. <xs:element name="winecellar">

4. <xs:complexType>

5. <Xs:sequence>

6. <xs:element name="wine" maxOccurs="unbounded" minOccurs="0">
7. <Xs:complexType>

8. <Xs:sequence>

9. <xs:element type="xs:string" name="name"/>

10. <xs:element type="xs:short" name="year"/>

11. <xs:element type="xs:string" name="type"/>

12. <xs:element name="grape" maxOccurs="unbounded" minOccurs="1">
13. <xs:complexType>

14. <xs:simpleContent>

15. <xs:extension base="xs:string">

16. <xs:attribute type="xs:byte" name="percentage" use="optional"/>
17. </xs:extension>

18. </xs:simpleContent>

Document Type Definitions and XML Schema Definitions

XML Schema definition for winecellar (contd.)

19. </xs:complexType>

20. </xs:element>

21. <xs:element name="price">

22. <xs:complexType>

23. <xs:simpleContent>

24. <xs:extension base="xs:short">

25. <xs:attribute type="xs:string" name="currency" use="optional"/>
26. </xs:extension>

27 . </xs:simpleContent>

28. </xs:complexType>

29. </xs:element>

30. <xs:element name="geo">

31. <xs:complexType>

32. <Xs:sequence>

33. <xs:element type="xs:string" name="country"/>
34. <xs:element type="xs:string" name="region"/>
35. </xs:sequence>

Document Type Definitions and XML Schema Definitions

XML Schema definition for winecellar (contd.)

36. </xs:complexType>

37. </xs:element>

38. <xs:element type="xs:byte" name="quantity"/>
39. </xs:sequence>

40. </xs:complexType>

41. </xs:element>

42. </Xs:sequence>

43, </xs:complexType>

44, </xs:element>

45. </xs:schema>

Extensible Stylesheet Language

* Extensible Stylesheet Language (XSL) can be used to
define stylesheet specifying how XML documents can be

visualized in a web browser

* XSL encompasses 2 specifications

— XSL Transformations (XSLT): transforms XML documents to other
XML documents, HTML web pages, or plain text

— XSL Formatting Objects (XSL-FO): specify formatting semantics
(e.g., transform XML documents to PDFs) but discontinued in

2012
* Decoupling of information content from information
visualization

Extensible Stylesheet Language

e XSLT stylesheet for summary document with only
name and quantity of each wine

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="'/"'>

<winecellarsummary>

<xsl:for-each select="winecellar/wine'>

<wine>

<name><xsl:value-of select="name'/></name>

<quantity><xsl:value-of select='quantity'/></quantity>

W 00 N O VT A W N B

(Y
O -

</wine>
. </xsl:for-each>
. </winecellarsummary>
. </xsl:template>
. </xsl:stylesheet>

S
w N R

Extensible Stylesheet Language

<?xml version="1.0" encoding="UTF-8"?>
<winecellarsummary>
<wine>
<name>Jacques Selosse Brut Initial</name>
<quantity>12</quantity>
</wine>
<wine>
<name>Meneghetti White</name>
<quantity>20</quantity>
</wine>
</winecellarsummary>

Extensible Stylesheet Language

e XSLT stylesheet for transforming XML document to
HTML

<?xml version="1.0" encoding="UTF-8"?>
<html xsl:version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<body style="font-family:Arial;font-size:12pt;background-
color:#ffff">
<hl>My Wine Cellar</hl>
<table border="1">
<tr bgcolor="#f2f212">
<th>Wine</th>
<th>Year</th>

http://www.color-hex.com/color/f2f2f2

Extensible Stylesheet Language

e XSLT stylesheet for transforming XML document to
HTML (contd.)

<th>Quantity</th>
</tr>
<xXsl:for-each select="winecellar/wine">
<tr>
<td><xsl:value-of select="name"/></td>
<td><xsl:value-of select="year"/></td>

<td><xsl:value-of select="quantity"/></td>
</tr>

</xsl:for-each>
</table>
</body>
</html>

Extensible Stylesheet Language

<html>
<body style="font-family:Arial;font-size:12pt;background-color:#ffff">
<h1>My Wine Cellar</h1>
<table border="1">
<tr bgcolor="#f2f2f2">
<th>Wine</th>
<th>Year</th>
<th>Quantity</th>
</tr>
<tr>
<td>Jacques Selosse Brut Initial</td>
<td>2012</td>
<td>12</td>
</tr>
<tr>
<td>Meneghetti White</td>
<td>2010</td>
<td>20</td>
</tr>
</table> </body></html>

http://www.color-hex.com/color/f2f2f2

Extensible Stylesheet Language

a4 My Wine Cellar

Wine Year||Quantity
Jacques Selosse Brut Initial|[2012|12
Meneghetti White 2010||20

BE Gy 20O

22

Namespaces

* To avoid name conflicts, XML introduced concept
of a namespace

* Introduce prefixes to XML elements to
unambiguously identify their meaning

* Prefixes typically refer to a URI (uniform resource
identifier) which uniquely identifies a web
resource such as a URL (uniform resource locator)

— does not need to refer to physically existing webpage

Namespaces

<winecellar xmlns:Bartns="www.dataminingapps.com/home.html">

<bartns:wine>

<bartns:name>Jacques Selosse Brut Initial</bartns:name>
<bartns:year>2012</bartns:year>

</bartns:wine>

<winecellar xmlns="www.dataminingapps.com/defaultns.html">

24

http://www.dataminingapps.com/home.html

XPath

e XPath is a simple, declarative language that uses

path expressions to refer to parts of an XML
document

— considers an XML document as an ordered tree

 Example XPath expressions

doc("winecellar.xml")/winecellar/wine
doc("winecellar.xml")/winecellar/wine[2]
doc("winecellar.xml")/winecellar/wine[price > 20]/name

Processing XML Documents

XSL stylesheet ’ [XSLT processor]
DTD or XSD [rrrrrrrrr]

Processing XML Documents

* DOM APl is a tree-based API and represents XML
document as a tree in internal memory

— developed by W3C

* DOM provides classes with methods to navigate
through the tree and do various operations

* DOM is useful to facilitate direct access to specific
XML document parts and when a high number of
data manipulations are needed, but can get
memory intensive

Processing XML Documents

<wine> [| }
wine
<name>Meneghetti White<name>

<year>20l106<year> //////\\\\\\\\

<wine> [] [
name year

Processing XML Documents

 SAX API (Simple APl for XML) is an event-based API

start document
start element: wine
start element: name
text: Meneghetti
end element: name
start element: year
text: 2010

end element: year
end element: wine
end document

Processing XML Documents

Event stream can be passed on to application which will
use an event handler

SAX has smaller memory footprint and is more scalable
than DOM

SAX is excellent for sequential access, but less suited to
support direct random access

SAX is less performing for heavy data manipulation than
DOM

StAX (Streaming API for XML) is a compromise

— StAX allows the application to pull XML data using a
cursor mechanism

Storage of XML Documents

e XML documents stored as semi-structured
data

* Approaches
—document-oriented approach

—data-oriented approach
—combined approach

Document-Oriented Approach for Storing XML Documents

XML document will be stored as a BLOB or CLOB in a table
cell
— RDBMS considers these as ‘black box’ data
— querying based upon full-text search
— (O)RDBMSs have introduced XML data type (SQL/XML
extension)
* Simple approach
— no need for DTD or XSD for the XML document
— especially well-suited for storing static content
— but: poor integration with relational SQL query processing

Data-Oriented Approach for Storing XML Documents

XML document decomposed into data parts spread across a
set of connected (object-) relational tables (shredding)

For highly structured documents and fine-granular queries
DBMS or middleware can do translation

Schema-oblivious shredding (starts from XML document)
versus schema-aware shredding (starts from DTD/ XSD)

Advantages
— SQL queries can now directly access individual XML elements
— reconstruct XML document using SQL joins

Object-relational DBMS as an alternative

The Combined Approach for Storing XML Documents

Combined approach (partial shredding) combines
document- and data-oriented approach

Some parts stored as BLOBs, CLOBs, or XML objects,
whereas other parts shredded

SQL views are defined to reconstruct XML document

Most DBMSs provide facilities to determine optimal level
of decomposition

Mapping approaches can be implemented using
middleware or by DBMS (XML-enabled DBMS)

Differences Between XML Data and Relational Data

* Building block of relational model is mathematical
relation which consists of O, 1 or more unordered

tuples
* Each tuple consists of 1 or more attributes

* The relational model does not implement any type
of ordering (<> XML model)

— add extra attribute type in RDBMS
— use list collection type in object-relational DBMS

Differences Between XML Data and Relational Data

* Relational model does not support nested
relations (first normal form)
— &> XML data is hierarchically structured
— object-relational DBMS supports nested relations

* Relational model does not support multivalued
attribute types (first normal form)

— &> XML allows same child element to appear multiple
times

— additional table needed in relational model

— object-relational model supports collection types

Differences Between XML Data and Relational Data

« RDBMS only supports atomic data types, such as integer,
string, date, etc.
— XML DTDs don’t support atomic data types (only (P)CDATA)
— XML Schema supports both atomic and aggregated types

— aggregated types modeled in object-relational databases using
user defined types

XML data is semi-structured
— can include certain anomalies
— change to DTD or XSD necessitates re-generation of tables

Mappings Between XML Documents and (Object-) Relational Data

Table-Based Mapping
Schema-Oblivious Mapping

Schema-Aware Mapping
SQL/XML

Table-Based Mapping

Specifies strict requirements to the structure of the XML document

<database>

<table>

<row>

<columnl> data </columnl>

</row>
<row>
<columnl> data </columnl>

</row>

</table>
<table>

</table>

</database>

Table-Based Mapping

Actual data is stored as content of column
elements

Advantage is simplicity given the perfect one-to-
one mapping

Document structure can be implemented using an
updatable SQL view

Disadvantage is rigid structure of XML document
— can be mitigated by XSLT

Schema-Oblivious Mapping

* Schema-oblivious mapping (shredding) transforms XML document
without availability of DTD or XSD

* First option is to transform the document to a tree structure,
whereby the nodes represent the data in the document

— tree can then be mapped to a relational model

* Example table

CREATE TABLE NODE (

ID CHAR(6) NOT NULL PRIMARY KEY,

PARENT_ID CHAR(6),

TYPE VARCHAR(9),

LABEL VARCHAR(20),

VALUE CLOB,

FOREIGN KEY (PARENT _ID) REFERENCES NODE (ID)

CONSTRAINT CC1 CHECK(TYPE IN ("element", "attribute")));

Schema-Oblivious Mapping

<?xml version="1.0" encoding="UTF-8"?>
<winecellar>
<wine winekey="1">
<name>Jacques Selosse Brut Initial</name>
<year>2012</year>
<type>Champagne</type>
<price>150</price>
</wine>
<wine winekey="2">
<name>Meneghetti White</name>
<year>2010</year>
<type>white wine</type>
<price>18</price>
</wine>
</winecellar>

ID | PARENT_ID | TYPE LABEL VALUE

1 | NULL element | winecellar | NULL

2 |1 element | wine NULL

3 (2 attribute | winekey 1

4 (2 element | name Jacques Selosse Brut Initial
5 [2 element | year 2012

6 |2 element | type Champagne

7 |2 element | price 150

8 |1 element | wine NULL

9 |8 attribute | winekey 2

1018 element | name Meneghetti White
1118 element | year 2010

1218 element | type white wine

13 (8 element | price 18

Schema-Oblivious Mapping

e XPath or XQuery (see later) queries can be translated

into SQL of which the result can be translated back to
XML

* Example

doc("winecellar.xml")/winecellar/wine[price > 20]/name

SELECT N2.VALUE

FROM NODE N1, NODE N2

WHERE

N2.LABEL="name" AND
N1.LABEL="price" AND
CAST(N1.VALUE AS INT)> 20 AND
N1.PARENT ID=N2.PARENT ID

Schema-Oblivious Mapping

Single table requires extensive querying (e.g., self-
joins)
More tables can be created

Mapping can be facilitated by making use of object-
relational extensions

Due to extensive shredding, reconstruction of XML
document can get quite resource intensive

— middleware solutions offer DOM API or SAX APl on top
of DBMS

— materialized views

Schema-Aware Mapping

* Steps to generate database schema from DTD or XSD

simplify DTD or XSD

map complex element type to relational table, or user-defined type, with
corresponding primary key

map element type with mixed content to separate table where the (P)CDATA
is stored; connect using primary-foreign key relationship

map single-valued attribute types, or child elements that occur only once,
with (P)CDATA content to a column in the corresponding relational table;
when starting from XSD, choose the SQL data type which most closely
resembles

map multi-valued attribute types, or child elements that can occur multiple
times, with (P)CDATA content to a separate table; use primary-foreign key
relationship; use collection type in case of object-relational DBMS

for each complex child element type, connect the tables using a primary-
foreign key relationship

Schema-Aware Mapping

e Generate a DTD or XSD from a database model
— map every table to an element type

— map every table column to an attribute type or child
element type with (P)CDATA in case of DTD, or most
closely resembling data type in case of XML Schema

— map primary-foreign key relationships by introducing
additional child element types

— object-relational collections can be mapped to
multivalued attribute types or element types which can
occur multiple times

SQL/XML

 Extension of SQL which introduces

— new XML data type with corresponding constructor
that treats XML documents as cell values in a column
of a relational table, and can be used to define

attribute types in user-defined types, variables, and
parameters of user-defined functions

— set of operators for the XML data type
— set of functions to map relational data to XML

* No rules for shredding

SQL/XML

CREATE TABLE PRODUCT (

PRODNR CHAR(6) NOT NULL PRIMARY KEY,
PRODNAME VARCHAR(60) NOT NULL,
PRODTYPE VARCHAR(15),

AVAILABLE QUANTITY INTEGER,

REVIEW XML);

INSERT INTO PRODUCT VALUES("120", "Conundrum", "white", 12,
XML (<review><author>Bart
Baesens</author><date>»27/02/2017</date> <description>This is
an excellent white wine with intriguing aromas of green apple,
tangerine and honeysuckle blossoms.<description><rating max-
value="100">94</rating></review>);

SQL/XML

* SQL/XML can be used to represent relational data
in XML

— default mapping whereby names of tables and
columns are translated to XML elements and row
elements are included for each table row

— also adds corresponding DTD or XSD
* SQL/XML also includes facilities to represent the
output of SQL queries in a tailored XML format

— XMLElement defines XML element using 2 arguments:
name of XML element and column name

SQL/XML

SELECT XMLElement("sparkling wine", PRODNAME)
FROM PRODUCT
WHERE PRODTYPE="sparkling";

<sparkling wine>Meerdael, Methode Traditionnelle
Chardonnay, 2014 </sparkling wine>

<sparkling wine>Jacques Selosse, Brut Initial,
2012</sparkling wine>

<sparkling wine>Billecart-Salmon, Brut Réserve,
2014</sparkling wine>

SQL/XML

SELECT XMLElement("sparkling wine", XMLAttributes(PRODNR AS "prodid"),
XMLElement("name", PRODNAME), XMLElement("quantity", AVAILABLE_QUANTITY))
FROM PRODUCT

WHERE PRODTYPE="sparkling";

<sparkling wine prodid="0178">

<name>Meerdael, Methode Traditionnelle Chardonnay, 2014</name>
<quantity»>136</quantity>

</sparkling wine>

<sparkling wine prodid="0199">

<name>Jacques Selosse, Brut Initial, 2012</name>
<quantity»>96</quantity>

</sparkling wine>

SELECT XMLElement("sparkling wine", XMLAttributes(PRODNR AS "prodid"),
XMLForest(PRODNAME AS "name", AVAILABLE QUANTITY AS "quantity"))

FROM PRODUCT

WHERE PRODTYPE="sparkling";

SQL/XML

SELECT XMLElement("product"”, XMLElement(prodid, P.PRODNR), XMLElement("name",
P.PRODNAME, XMLAgg("supplier", S.SUPNR))

FROM PRODUCT P, SUPPLIES S

WHERE P.PRODNR=S.PRODNR

GROUP BY P.PRODNR

<product>

<prodid>178</prodid>

<name>Meerdael, Methode Traditionnelle Chardonnay</name>
<supplier>21</supplier>

<supplier>37</supplier>

<supplier>68</supplier>

<supplier>69</supplier>

<supplier>94</supplier>

</product>

<product>

<prodid>199</prodid>

<name>Jacques Selosse, Brut Initial, 2012</name>
<supplier>69</supplier>

<supplier>94</supplier>

</product>

SQL/XML

SELECT PRODNR, XMLElement("sparkling wine", PRODNAME),
AVAILABLE QUANTITY

FROM PRODUCT

WHERE PRODTYPE="sparkling";

0178, <sparkling wine>Meerdael, Methode Traditionnelle
Chardonnay, 2014</sparkling wine>, 136

0199, <sparkling wine>Jacques Selosse, Brut Initial,
2012</sparkling wine>, 96

0212, <sparkling wine>Billecart-Salmon, Brut Réserve,
2014</sparkling wine>, 141

SQL/XML

 Template-based mapping

— embed SQL statements in XML documents using tool-specific delimiter (e.g.,
<selectStmt>)

<?xml version="1.0" encoding="UTF-8"?>
<sparklingwines>

<heading>List of Sparkling Wines</heading>
<selectStmt>

SELECT PRODNAME, AVAILABLE QUANTITY FROM PRODUCT WHERE
PRODTYPE="sparkling";

</selectStmt>

<wine>

<name> $PRODNAME </name>

<quantity> $AVAILABLE QUANTITY </quantity>

</wine>

</sparklingwines> 54

SQL/XML

<?xml version="1.0" encoding="UTF-8"?>
<sparklingwines>

<heading>List of Sparkling Wines</heading>
<wine>

<name>Meerdael, Methode Traditionnelle Chardonnay, 2014</name>
<quantity»>136</quantity>

</wine>

<wine>

<name>Jacques Selosse, Brut Initial, 2012</name>
<quantity>96</quantity>

</wine>

</sparklingwines>

Searching XML Data

Full-text search

Keyword-Based Search

Structured Search with Xquery
Semantic Search with RDF and SPARQL

Full-text search

Treat XML documents as textual data and conduct
brute force full-text search

Does not take into account any tag structure

Can be applied to XML documents that have been
stored as files or as BLOB/CLOB objects

Usually by means of object-relational extension

No semantically-rich queries targeting individual
XML elements

Keyword-Based Search

Assumes XML document is complemented with a
set of keywords describing document metadata

Keywords can be indexed by text search engines
Document still stored in a file or as BLOB/CLOB
Still not full expressive power of XML for querying

Structured Search with XQuery

e Structured search uses structural metadata which relates
to actual document content

 E.g., XML book reviews

— document metadata: properties of the document such as,
author of the review document (e.g., Wilfried Lemahieu) and
creation date (e.g., June 6", 2017)

— structural metadata: role of individual content fragments within
the overall document structure, e.g., title of book (‘Analytics in
a Big Data World’), author of book (‘Bart Baesens’), ...

Structured Search with XQuery

e Structured search queries query document content by
means of structural metadata

— E.g., search for reviews of books authored by Bart Baesens

e XQuery formulates structured queries for XML documents
— can consider both document structure and elements’ content
— XPath path expressions are used for navigation
— includes constructs to refer to and compare content of elements
— syntax similar to SQL

Structured Search with XQuery

XQuery statement is formulated as a FLOWR
Instruction

FOR $variable IN expression
LET $variable:=expression
WHERE filtercriterion

ORDER BY sortcriterion
RETURN expression

Structured Search with XQuery

LET $maxyear:=2012
RETURN doc("winecellar.xml")/winecellar/wine[year <$maxyear]

FOR $wine IN doc("winecellar.xml")/winecellar/wine
ORDER BY $wine/year ASCENDING
RETURN $wine

FOR $wine IN doc("winecellar.xml")/winecellar/wine

WHERE $wine/price < 20 AND $wine/price/@currency="EURO"
RETURN <cheap wine> {$wine/name, $wine/price}</cheap wine>

FOR $wine IN doc("winecellar.xml")/wine
$winereview IN doc("winereview.xml")/winereview
WHERE $winereview/@winekey=$wine/@winekey
RETURN <wineinfo> {$wine, $winereview/rating} </wineinfo>

Semantic Search with RDF and SPARQL

 Example of semantically-complicated query
“Retrieve all spicy, ruby colored red wines with
round texture raised in clay soil and Mediterranean
climate which pair well with cheese”

* Semantic web technology stack
— RDF
— RDF Schema
— OWL
— SPARQL

Semantic Search with RDF and SPARQL

e Resource Description Framework (RDF) provides data
model for semantic web

— encodes graph-structured data by attaching semantic meaning to relationships
— data model consists of statements in subject-predicate-object format (triples)

Subject Predicate |Object

Bart name Bart Baesens

Bart likes Meneghetti White
Meneghetti White tastes Citrusy
Meneghetti White pairs Fish

Semantic Search with RDF and SPARQL

* Represent subjects and predicates using URIs, and objects

using URIs

— universal unique identification becomes possible

* Note: predicate refers to vocabulary or ontology

Subject

Predicate

Object

http://www.kuleuven.be/Bart.Baesens

http://mywineontology.com/#term name

“Bart Baesens”

http://www.kuleuven.be/Bart.Baesens

http://mywineontology.com/#term likes

http://www.wine.com/MeneghettiWhite

http://www.wine.com/MeneghettiWhite

http://mywineontology.com/#term tastes

“Citrusy”

http://www.wine.com/MeneghettiWhite

http://mywineontology.com/#term pairs

http://wikipedia.com/Fish

http://www.kuleuven.be/Bart.Baesens
http://mywineontology.com/#term_name
http://www.kuleuven.be/Bart.Baesens
http://mywineontology.com/#term_likes
http://www.wine.com/MeneghettiWhite
http://www.wine.com/MeneghettiWhite
http://mywineontology.com/#term_tastes
http://www.wine.com/MeneghettiWhite
http://mywineontology.com/#term_pairs
http://wikipedia.com/Fish

Semantic Search with RDF and SPARQL

http://www.kuleuven.be/Bart.Baesens

http://mywineontology.com/#term_likes http://mywineontology.com/#term_name

http://www.wine.com/MeneghettiWhite Bart Baesens

http://mywineontology.com/#term_pairs http://mywineontology.com/#term_tastes

http://wikipedia.com/Fish Citrusy

66

Semantic Search with RDF and SPARQL

* RDF data can be serialized by means of RDF/XML

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/TR/PR-rdf-syntax/"
xmlns:myxlmns="http://mywineontology.com/" />

<rdf:Description
rdf:about="http://www.kuleuven.be/Bart.Baesens">

<myxlmns:name>Bart Baesens</ myxlmns:name>

<myxlmns:likes
rdf:resource="http://www.wine.com/MeneghettiWhite"/>

</rdf:Description>
</rdf:RDF>

Semantic Search with RDF and SPARQL

 RDF is one of the key technologies to realize
Linked Data

* RDF Schema enriches RDF by extending its
vocabulary with classes and subclasses, properties
and subproperties, and typing of properties

 Web Ontology Language (OWL) is an even more
expressive ontology language which implements
various sophisticated semantic modeling concepts

Semantic Search with RDF and SPARQL

* RDF data can be queried using SPARQL (“SPARQL Protocol
and RDF Query Language”)

 SPARQL is based upon matching graph patterns against
RDF graphs

 Examples

PREFIX: mywineont: <http://mywineontology.com/>
SELECT ?wine
WHERE {?wine, mywineont:tastes, "Citrusy"}

PREFIX: mywineont: <http://mywineontology.com/>
SELECT ?wine, ?flavor
WHERE {?wine, mywineont:tastes, ?flavor}

XML for Information Exchange

Message Oriented Middleware (MOM)
SOAP-Based Web Services

REST-Based Web Services

Web Services and Databases

Message Oriented Middleware (MOM)

* Enterprise Application Integration (EAI): set of
activities aimed at integrating applications within

an enterprise
* EAIl can be facilitated by 2 types of middleware

— Remote Procedure Call (RPC): communication is
established through procedure calls (e.g., RMI, DCOM);

usually synchronous; strong coupling

— Message Oriented Middleware (MOM) integration is
established by exchanging XML messages; usually
asynchronous; loose coupling

SOAP-Based Web Services

Web services: self-describing software components, which can be
published, discovered and invoked through the web

Simple Object Access Protocol (SOAP)

— Extensible, neutral, and independent XML-based messaging framework

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<GetQuote xmlns="http://www.webserviceX.NET/">
<symbol>string</symbol>

</GetQuote>

</soap:Body>

</soap:Envelope>

SOAP-Based Web Services

* Before a SOAP message can be sent to a web service, it
must be clear which type(s) of incoming messages the
service understands and what messages it can send in

return
* Web Services Description Language (WSDL) is an XML-

based language used to describe the interface or
functionalities offered by a web service

SOAP-Based Web Services

<?xml

<wsdl:
:http="http://schemas.xmlsoap.org/wsdl/http/" xmlns:soapl2="http://schemas.xmlsoap.org/wsdl/soapl2/"

xmlns

xmlns:
:tns="http://www.webserviceX.NET/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns

xmlns:
<wsdl:

version="1.0" encoding="UTF-8"?>
definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" targetNamespace="http://www.webserviceX.NET/"

s="http://www.w3.0rg/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/">
types><s:schema targetNamespace="http://www.webserviceX.NET/" elementFormDefault="qualified">

<s:element name="GetQuote">

<s:complexType>

<s:sequence>

<s:element type="s:string" name="symbol" maxOccurs="1" minOccurs="0"/></s:sequence>
</s:complexType></s:element>

<s:element name="GetQuoteResponse">

<s:complexType>

<s:sequence>
<s:element type="s:string" name="GetQuoteResult" maxOccurs="1" minOccurs="0"/>

</s:sequence>

</s:complexType>

</s:element>

<s:element type="s:string" name="string" nillable="true"/>
</s:schema>

</wsdl:types>

</wsdl:definitions>

SOAP-Based Web Services

* Web service represented as set of port types that define
set of abstract operations

— operation has input message and optional output message
(SOAP based)

— message specifies attributes and their types using XML Schema

— port types can be mapped to an implementation (port) by
specifying URL

— same WSDL document can refer to multiple implementations

e E-business transactions take place according to
predefined process model based on web services and
XML

REST-Based Web Services

* REST (Representational State Transfer) is built on
top of HTTP and is completely stateless and light
— |less verbose than SOAP

— based on request-reply functionality, for which HTTP is
already perfectly suited

— has become the architecture of choice by “modern” web
companies to provide APIs

— REST is tightly integrated with HTTP whereas SOAP is
communication agnostic

REST-Based Web Services

HTTP/1.0 200 OK
Content-Type: application/xml
<StockQuotes>
<Stock>
<Symbol>IBM</Symbol>

GET /stockquote/IBM HTTP/1.1 <Last>140,33</Last>

Host: www.example.com <Date>22/8/2017</Date>

Connection: keep-alive <Time>11:56am</Time>

Accept: application/xml <Change>-0.16</Change>
<Open>139,59</0Open>
<High>140,42</High>
<Low>139,13</Low>
<MktCap>135,28B</MktCap>
<P-E>11,65</P-E>
<Name>International Business Machines</Name>
</Stock>
</StockQuotes>

Web Services and Databases

Web service can make use of underlying database
Database can act as web service provider or web service consumer

Stored procedures can be extended with WSDL interface and
published as web services

— results can be returned as XML (e.g., SQL/XML)
Stored procedures or triggers can include calls to external web
services

— E.g., trigger which monitors (local) stock data and if safety stock level is
reached automatically generates a (e.g. SOAP) message with a purchase
order to the web service hosted by the supplier

Implications on transaction management (e.g. WS-BPEL)!

Other Data Representation Formats

* JSON and YAML are optimized for data interchange and
serialization

e JavaScript Object Notation (JSON) provides a simple,
lightweight representation based on name-value pairs
— JSON provides 2 structured types: objects and arrays

— primitive types supported: string, number, Boolean, and null

— JSON is human and machine readable and models data in
hierarchical way

— structure of JSON specification can be defined using JSON Schema
— JSON is not a markup language and not extensible

— JSON documents can be parsed using the eval() function

— native and fast JSON parsers in modern day web browsers

Other Data Representation Formats

{

"winecellar": {
"wine": [
{

"name": "Jacques Selosse Brut Initial",

"year": "2012",

"type": "Champagne",

"grape": {
" percentage”: "100",
" _text": "Chardonnay"”

}s

"price": {
" _currency”: "EURO",
" text": "150"

}s

Other Data Representation Formats

{

"geo": { " percentage": "20",
“country”: "France”, " text": "Pinot Blanc"
"region": "Champagne" }

}s 1,
"quantity": "12" "price": {
}s " _currency": "EURO",
{ ll_tex_t (1] : |I18II
"name": "Meneghetti White", },
"year": "2010", "geo": {
“type”: "white wine", "country": "Croatia",
"grape”: ["region": "Istria"
{ }s
" _percentage"”: "80", "quantity": "20"
" _text": "Chardonnay" }
}s]
}

}

Other Data Representation Formats

 YAML Ain’t a Markup Language (YAML) is a
superset of JSON with support for relational trees,
user-defined types, explicit data typing, lists and
casting
— better alternative for object serialization
— uses inline and white space delimiters

— works with mappings, which are sets of unordered

key/value pairs and sequences which correspond to
arrays

— supports numbers, strings, Boolean, dates,
timestamps, and null

Other Data Representation Formats

winecellar:
wine:

name: "Jacques Selosse Brut

Initial™
year: 2012
type: Champagne
grape:

_percentage: 100
__text: Chardonnay

price:
_currency: EURO
__text: 150
geo:

country: France
region: Champagne
quantity: 12

name: "Meneghetti White"

year: 2010
type: "white wine"
grape:
_percentage: 80
__text: Chardonnay
_percentage: 20
__text: "Pinot Blanc"
price:
_currency: EURO
__text: 18
geo:
country: Croatia
region: Istria
quantity: 20

Conclusions

Extensible Markup Language

Processing XML Documents

Storage of XML Documents

Differences between XML and Relational Data

Mappings Between XML Documents and (Object-)
Relational Data

Searching XML Data
XML for Information Exchange
Other Data Representation Formats

More information?

- W
(! Ll { E

JUMP INTU 14HE E% _ VING‘IURL

e S .
N SN

OFDATABASE MA GEME»

Princigles of Database,
manqement information to

bdse design"and modeling, database systems; data storage, and the'evolving world
of data warehoising, governance and more. Designed for those studying datal
management for information management or computer science, this illustrates
textbook has a we" ba[anced theory practice focus and covers the essential tapics,
from blished ies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, drill-down boxes that reveal deeper insights on key
topics, retention questions at the end of every section of a chapter, and connections
boxes that show the relationship b hroughout the text are included to
provide the practical tools to get started in database management.

with the

KEY FEATURES INCLUDE:
* Full-color illustrations throughout the text.

* Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.

An online playground with diverse environments, including MySQL for querying;
MongoDB; Neodj Cypher; and a tree structure visualization environment.

Hundreds of examples to illustrate and clarify the concepts discussed that can be
reproduced on the book’s companion online playground.

Case studies, review questions, problems and exercises in every chapter.

Additional cases, p: and it in the di

Online Resources
www.cambridge.org/

Instructor’s resources

M Solutions manual
M Code and data for examples

Cover illustration: @Chen Hanquan / DigitalVision / Getty lmages.
Cover design: Andrew Ward.

9"781107"186125

il)
1d and apply the fund: | col -

>

SN3S3 V8 ONY
T3IHYIWAT

I1IN0YE NIONYA

|

bl

<2
O
—
m
w
o)
M

INIWIIVNVIN 3SVE

.

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

PRINCIPLES OF
DATABASE

MANAGEMENT

THE PRACTICAL GUIDE TO STORING. MANAGING
AND ANALYZING BIG AND SMALL DAT&

www.pdbmbook.co

http://www.pdbmbook.com/

